William T Pu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4574718/publications.pdf

Version: 2024-02-01

190 papers 21,308 citations

76 h-index 139 g-index

206 all docs

206 docs citations

206 times ranked 25043 citing authors

#	Article	IF	CITATIONS
1	Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 2007, 13, 952-961.	30.7	1,862
2	Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 2008, 454, 109-113.	27.8	905
3	Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Medicine, 2014, 20, 616-623.	30.7	733
4	De novo cardiomyocytes from within the activated adult heart after injury. Nature, 2011, 474, 640-644.	27.8	602
5	Altered microRNA expression in human heart disease. Physiological Genomics, 2007, 31, 367-373.	2.3	564
6	Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnology, 2013, 31, 898-907.	17.5	528
7	YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2394-2399.	7.1	475
8	Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. Journal of Clinical Investigation, 2011, 121, 1894-1904.	8.2	438
9	Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation, 2018, 138, e653-e711.	1.6	387
10	Single-Cell Resolution of Temporal Gene Expression during Heart Development. Developmental Cell, 2016, 39, 480-490.	7.0	361
11	MicroRNA-1 Negatively Regulates Expression of the Hypertrophy-Associated Calmodulin and Mef2a Genes. Molecular and Cellular Biology, 2009, 29, 2193-2204.	2.3	358
12	Adult Cardiac-Resident MSC-like Stem Cells with a Proepicardial Origin. Cell Stem Cell, 2011, 9, 527-540.	11.1	358
13	Cardiomyocyte Maturation. Circulation Research, 2020, 126, 1086-1106.	4.5	355
14	mir-17–92 Cluster Is Required for and Sufficient to Induce Cardiomyocyte Proliferation in Postnatal and Adult Hearts. Circulation Research, 2013, 112, 1557-1566.	4.5	348
15	Endocardial and Epicardial Epithelial to Mesenchymal Transitions in Heart Development and Disease. Circulation Research, 2012, 110, 1628-1645.	4.5	344
16	Cardiac-Specific YAP Activation Improves Cardiac Function and Survival in an Experimental Murine MI Model. Circulation Research, 2014, 115, 354-363.	4.5	324
17	Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5632-5637.	7.1	316
18	Recounting Cardiac Cellular Composition. Circulation Research, 2016, 118, 368-370.	4.5	298

#	Article	IF	CITATIONS
19	Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology, 2011, 53, 983-995.	7.3	253
20	<i>Pi3kcb</i> Links Hippo-YAP and Pl3K-AKT Signaling Pathways to Promote Cardiomyocyte Proliferation and Survival. Circulation Research, 2015, 116, 35-45.	4.5	237
21	Evaluation of the role of IKAChin atrial fibrillation using a mouse knockout model. Journal of the American College of Cardiology, 2001, 37, 2136-2143.	2.8	234
22	PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes and Development, 2012, 26, 37-42.	5.9	232
23	Morphogenesis of the right ventricle requires myocardial expression of Gata4. Journal of Clinical Investigation, 2005, 115, 1522-1531.	8.2	232
24	Spectrum of heart disease associated with murine and human GATA4 mutation. Journal of Molecular and Cellular Cardiology, 2007, 43, 677-685.	1.9	218
25	WT1 regulates epicardial epithelial to mesenchymal transition through \hat{l}^2 -catenin and retinoic acid signaling pathways. Developmental Biology, 2011, 356, 421-431.	2.0	208
26	GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Developmental Biology, 2004, 275, 235-244.	2.0	200
27	Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Developmental Biology, 2008, 323, 98-104.	2.0	196
28	Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nature Communications, 2019, 10, 1802.	12.8	190
29	Polycomb Repressive Complex 2 Regulates Normal Development of the Mouse Heart. Circulation Research, 2012, 110, 406-415.	4.5	188
30	Enhancing the precision of genetic lineage tracing using dual recombinases. Nature Medicine, 2017, 23, 1488-1498.	30.7	188
31	De novo formation of a distinct coronary vascular population in neonatal heart. Science, 2014, 345, 90-94.	12.6	181
32	Platelet-Derived Growth Factor Receptor \hat{l}^2 Signaling Is Required for Efficient Epicardial Cell Migration and Development of Two Distinct Coronary Vascular Smooth Muscle Cell Populations. Circulation Research, 2008, 103, 1393-1401.	4.5	178
33	The complex genetics of hypoplastic left heart syndrome. Nature Genetics, 2017, 49, 1152-1159.	21.4	177
34	Gata4 is required for maintenance of postnatal cardiac function and protection from pressure overload-induced heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14471-14476.	7.1	170
35	Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. Journal of Molecular and Cellular Cardiology, 2010, 49, 841-850.	1.9	166
36	Development of heart valves requires Gata4 expression in endothelial-derived cells. Development (Cambridge), 2006, 133, 3607-3618.	2.5	163

#	Article	IF	Citations
37	Cellular Origin and Developmental Program of Coronary Angiogenesis. Circulation Research, 2015, 116, 515-530.	4.5	162
38	A tissue-engineered scale model of the heart ventricle. Nature Biomedical Engineering, 2018, 2, 930-941.	22.5	162
39	Molecular mechanisms of arrhythmogenic cardiomyopathy. Nature Reviews Cardiology, 2019, 16, 519-537.	13.7	155
40	Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects. Developmental Biology, 2007, 301, 602-614.	2.0	154
41	Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nature Communications, 2014, 5, 4907.	12.8	142
42	Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Developmental Biology, 2010, 338, 251-261.	2.0	138
43	Heart Failure–Associated Changes in RNA Splicing of Sarcomere Genes. Circulation: Cardiovascular Genetics, 2010, 3, 138-146.	5.1	137
44	Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion. Journal of Biological Chemistry, 2014, 289, 18681-18692.	3.4	136
45	Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nature Communications, 2014, 5, 5507.	12.8	128
46	Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochemical and Biophysical Research Communications, 2008, 375, 450-453.	2.1	126
47	A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. Journal of Clinical Investigation, 2011, 121, 1585-1595.	8.2	123
48	A multivariate approach for integrating genome-wide expression data and biological knowledge. Bioinformatics, 2006, 22, 2373-2380.	4.1	122
49	Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 43-47.	1.9	122
50	Overexpression of HAX-1 Protects Cardiac Myocytes From Apoptosis Through Caspase-9 Inhibition. Circulation Research, 2006, 99, 415-423.	4.5	118
51	Gata4 Is Essential for the Maintenance of Jejunal-Ileal Identities in the Adult Mouse Small Intestine. Molecular and Cellular Biology, 2006, 26, 9060-9070.	2.3	118
52	Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14035-14040.	7.1	117
53	Cardiac Regeneration. Circulation Research, 2017, 120, 941-959.	4.5	117
54	Interrogating translational efficiency and lineage-specific transcriptomes using ribosome affinity purification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15395-15400.	7.1	116

#	Article	IF	CITATIONS
55	Optimization of Genome Engineering Approaches with the CRISPR/Cas9 System. PLoS ONE, 2014, 9, e105779.	2.5	114
56	Dilated Cardiomyopathy Resulting From High-Level Myocardial Expression of Cre-Recombinase. Journal of Cardiac Failure, 2006, 12, 392-398.	1.7	112
57	A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds. Scientific Reports, 2013, 3, 2243.	3.3	108
58	GATA4 Is a Direct Transcriptional Activator of <i>Cyclin D2</i> and <i>Cdk4</i> and Is Required for Cardiomyocyte Proliferation in Anterior Heart Field-Derived Myocardium. Molecular and Cellular Biology, 2008, 28, 5420-5431.	2.3	107
59	Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells. Angiogenesis, 2012, 15, 443-455.	7.2	106
60	Analysis of Cardiac Myocyte Maturation Using CASAAV, a Platform for Rapid Dissection of Cardiac Myocyte Gene Function In Vivo. Circulation Research, 2017, 120, 1874-1888.	4.5	106
61	Insights Into the Pathogenesis of Catecholaminergic Polymorphic Ventricular Tachycardia From Engineered Human Heart Tissue. Circulation, 2019, 140, 390-404.	1.6	105
62	Transcription factor GATA4 regulates cardiac BCL2 gene expression in vitro and in vivo. FASEB Journal, 2006, 20, 800-802.	0.5	102
63	Strategies for Cardiac Regeneration and Repair. Science Translational Medicine, 2014, 6, 239rv1.	12.4	100
64	A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nature Communications, 2019, 10, 4907.	12.8	100
65	Transcription factor genes <i>Smad4</i> and <i>Gata4</i> cooperatively regulate cardiac valve development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4006-4011.	7.1	98
66	WT1 Maintains Adrenal-Gonadal Primordium Identity and Marks a Population of AGP-like Progenitors within the Adrenal Gland. Developmental Cell, 2013, 27, 5-18.	7.0	98
67	NFAT Transcription Factors Are Critical Survival Factors That Inhibit Cardiomyocyte Apoptosis During Phenylephrine Stimulation In Vitro. Circulation Research, 2003, 92, 725-731.	4.5	97
68	Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Nature Protocols, 2017, 12, 88-103.	12.0	97
69	Timing of Myocardial <i>Trpm7</i> Deletion During Cardiogenesis Variably Disrupts Adult Ventricular Function, Conduction, and Repolarization. Circulation, 2013, 128, 101-114.	1.6	94
70	pICIn Inhibits snRNP Biogenesis by Binding Core Spliceosomal Proteins. Molecular and Cellular Biology, 1999, 19, 4113-4120.	2.3	92
71	miR-155 Inhibits Expression of the MEF2A Protein to Repress Skeletal Muscle Differentiation. Journal of Biological Chemistry, 2011, 286, 35339-35346.	3.4	91
72	Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12331-12336.	7.1	89

#	Article	IF	CITATIONS
73	Mitochondrial Cardiomyopathy Caused by Elevated Reactive Oxygen Species and Impaired Cardiomyocyte Proliferation. Circulation Research, 2018, 122, 74-87.	4.5	89
74	Regulation of GATA4 Transcriptional Activity in Cardiovascular Development and Disease. Current Topics in Developmental Biology, 2012, 100, 143-169.	2.2	88
75	Acetylation of VGLL4 Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth. Developmental Cell, 2016, 39, 466-479.	7.0	86
76	A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity. Genome Research, 2013, 23, 917-927.	5.5	83
77	Developmental Changes in Ventricular Diastolic Function Correlate With Changes in Ventricular Myoarchitecture in Normal Mouse Embryos. Circulation Research, 2003, 93, 857-865.	4.5	82
78	Gene Therapy for Catecholaminergic Polymorphic Ventricular Tachycardia by Inhibition of Ca ²⁺ /Calmodulin-Dependent Kinase II. Circulation, 2019, 140, 405-419.	1.6	81
79	Dissecting spatioâ€temporal protein networks driving human heart development and related disorders. Molecular Systems Biology, 2010, 6, 381.	7.2	80
80	GATA4 regulates Fgf16 to promote heart repair after injury. Development (Cambridge), 2016, 143, 936-49.	2.5	79
81	VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis. Nature Communications, 2017, 8, 383.	12.8	79
82	Congenital Heart Disease–Causing Gata4 Mutation Displays Functional Deficits In Vivo. PLoS Genetics, 2012, 8, e1002690.	3.5	77
83	Uracil interference, a rapid and general method for defining protein-DNA interactions involving the 5-methyl group of thymines: The GCN4-DNA complex. Nucleic Acids Research, 1992, 20, 771-775.	14.5	75
84	Insulin-Like Growth Factor 1 Receptor-Dependent Pathway Drives Epicardial Adipose Tissue Formation After Myocardial Injury. Circulation, 2017, 135, 59-72.	1.6	74
85	Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. Genome Biology, 2016, 17, 120.	8.8	73
86	Genetic Cre-loxP Assessment of Epicardial Cell Fate Using Wt1-Driven Cre Alleles. Circulation Research, 2012, 111, e276-80.	4.5	72
87	Conditional ablation of Gata4 and Fog2 genes in mice reveals their distinct roles in mammalian sexual differentiation. Developmental Biology, 2011, 353, 229-241.	2.0	70
88	Identification of a hybrid myocardial zone in the mammalian heart after birth. Nature Communications, 2017, 8, 87.	12.8	67
89	Long non-coding RNAs link extracellular matrix gene expression to ischemic cardiomyopathy. Cardiovascular Research, 2016, 112, 543-554.	3.8	64
90	Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. Journal of Clinical Investigation, 2009, 119, 1462-1476.	8.2	64

#	Article	IF	Citations
91	Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nature Communications, 2018, 9, 3837.	12.8	63
92	Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Developmental Cell, 2021, 56, 292-309.e9.	7.0	63
93	Expression and Function of MicroRNAs in Heart Disease. Current Drug Targets, 2010, 11, 913-925.	2.1	62
94	Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA. Science Advances, 2020, 6, eaba7606.	10.3	62
95	AAV Gene Therapy Prevents and Reverses Heart Failure in a Murine Knockout Model of Barth Syndrome. Circulation Research, 2020, 126, 1024-1039.	4.5	62
96	Epicardial epithelial-to-mesenchymal transition in injured heart. Journal of Cellular and Molecular Medicine, 2011, 15, 2781-2783.	3.6	60
97	Divergent Requirements for EZH1 in Heart Development Versus Regeneration. Circulation Research, 2017, 121, 106-112.	4.5	60
98	Inflammatory signals from photoreceptor modulate pathological retinal angiogenesis via c-Fos. Journal of Experimental Medicine, 2017, 214, 1753-1767.	8.5	60
99	pICIn Binds to a Mammalian Homolog of a Yeast Protein Involved in Regulation of Cell Morphology. Journal of Biological Chemistry, 1998, 273, 10811-10814.	3.4	57
100	Nuclear receptor RORα regulates pathologic retinal angiogenesis by modulating SOCS3-dependent inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10401-10406.	7.1	55
101	Host non-inflammatory neutrophils mediate the engraftment of bioengineered vascular networks. Nature Biomedical Engineering, 2017, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1	22.5	55
102	Trbp regulates heart function through microRNA-mediated Sox6 repression. Nature Genetics, 2015, 47, 776-783.	21.4	53
103	Uncoupling protein 2 modulates cell viability in adult rat cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H829-H835.	3.2	52
104	Epicardium is required for cardiac seeding by yolk sac macrophages, precursors of resident macrophages of the adult heart. Developmental Biology, 2016, 413, 153-159.	2.0	51
105	Mapping cell type-specific transcriptional enhancers using high affinity, lineage-specific Ep300 bioChIP-seq. ELife, 2017, 6, .	6.0	50
106	Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation. Stem Cell Research, 2014, 13, 571-581.	0.7	49
107	Epicardium-to-fat transition in injured heart. Cell Research, 2014, 24, 1367-1369.	12.0	49
108	EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent. ELife, 2017, 6, .	6.0	44

#	Article	IF	CITATIONS
109	CompleteMOTIFs: DNA motif discovery platform for transcription factor binding experiments. Bioinformatics, 2011, 27, 715-717.	4.1	43
110	Increased Reactive Oxygen Species–Mediated Ca ²⁺ /Calmodulin-Dependent Protein Kinase II Activation Contributes to Calcium Handling Abnormalities and Impaired Contraction in Barth Syndrome. Circulation, 2021, 143, 1894-1911.	1.6	42
111	Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis. Journal of Clinical Investigation, 2015, 125, 4122-4134.	8.2	42
112	Endostatin lowers blood pressure via nitric oxide and prevents hypertension associated with VEGF inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11306-11311.	7.1	39
113	Insights into the Genetic Structure of Congenital Heart Disease from Human and Murine Studies on Monogenic Disorders. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013946-a013946.	6.2	39
114	Novel Roles of GATA4/6 in the Postnatal Heart Identified through Temporally Controlled, Cardiomyocyte-Specific Gene Inactivation by Adeno-Associated Virus Delivery of Cre Recombinase. PLoS ONE, 2015, 10, e0128105.	2.5	39
115	Peritruncal Coronary Endothelial Cells Contribute to Proximal Coronary Artery Stems and Their Aortic Orifices in the Mouse Heart. PLoS ONE, 2013, 8, e80857.	2.5	38
116	SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth. Science Signaling, 2015, 8, ra94.	3.6	38
117	Sarcomeres regulate murine cardiomyocyte maturation through MRTF-SRF signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	38
118	Mesenchymal stem/stromal cells (MSC) transfected with stromal derived factor 1 (SDF-1) for therapeutic neovascularization: Enhancement of cell recruitment and entrapment. Medical Hypotheses, 2007, 68, 1268-1271.	1.5	37
119	Conditional Gata4 deletion in mice induces bile acid absorption in the proximal small intestine. Gut, 2010, 59, 888-895.	12.1	35
120	Myocardial regeneration: expanding the repertoire of thymosin \hat{l}^24 in the ischemic heart. Annals of the New York Academy of Sciences, 2012, 1269, 92-101.	3.8	35
121	LARP7 Protects Against Heart Failure by Enhancing Mitochondrial Biogenesis. Circulation, 2021, 143, 2007-2022.	1.6	35
122	Dimerization of leucine zippers analyzed by random selection. Nucleic Acids Research, 1993, 21, 4348-4355.	14.5	34
123	Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. ELife, 2020, 9, .	6.0	34
124	Diagnosis and Management of Agenesis of the Right Lung and Left Pulmonary Artery Sling. American Journal of Cardiology, 1996, 78, 723-727.	1.6	32
125	ICIn Is Essential for Cellular and Early Embryonic Viability. Journal of Biological Chemistry, 2000, 275, 12363-12366.	3.4	32
126	Regulation of myonuclear positioning and muscle function by the skeletal muscle-specific CIP protein. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19254-19265.	7.1	32

#	Article	IF	Citations
127	Enhancer dependence of cell-type–specific gene expression increases with developmental age. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21450-21458.	7.1	32
128	Genomeâ€Wide Location Analysis by Pull Down of In Vivo Biotinylated Transcription Factors. Current Protocols in Molecular Biology, 2010, 92, Unit 21.20.	2.9	30
129	TEAD1 protects against necroptosis in postmitotic cardiomyocytes through regulation of nuclear DNA-encoded mitochondrial genes. Cell Death and Differentiation, 2021, 28, 2045-2059.	11.2	30
130	More than a cover: epicardium as a novel source of cardiac progenitor cells. Regenerative Medicine, 2008, 3, 633-635.	1.7	29
131	CIP, a Cardiac Isl1-Interacting Protein, Represses Cardiomyocyte Hypertrophy. Circulation Research, 2012, 110, 818-830.	4.5	28
132	Inducible cardiomyocyteâ€specific gene disruption directed by the rat Tnnt2 promoter in the mouse. Genesis, 2010, 48, 63-72.	1.6	27
133	Depletion of polycomb repressive complex 2 core component EED impairs fetal hematopoiesis. Cell Death and Disease, 2017, 8, e2744-e2744.	6.3	27
134	Massively parallel in vivo CRISPR screening identifies RNF20/40 as epigenetic regulators of cardiomyocyte maturation. Nature Communications, 2021, 12, 4442.	12.8	27
135	Structural characterization of the mouse Girk genes. Gene, 2002, 284, 241-250.	2.2	26
136	Contribution of Fetal, but Not Adult, Pulmonary Mesothelium to Mesenchymal Lineages in Lung Homeostasis and Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 222-230.	2.9	25
137	Therapeutic neovascularization for peripheral arterial diseases: advances and perspectives. Histology and Histopathology, 2007, 22, 677-86.	0.7	25
138	aYAP modRNA reduces cardiac inflammation and hypertrophy in a murine ischemia-reperfusion model. Life Science Alliance, 2020, 3, e201900424.	2.8	24
139	MICAL1 constrains cardiac stress responses and protects against disease by oxidizing CaMKII. Journal of Clinical Investigation, 2020, 130, 4663-4678.	8.2	23
140	Isolation and Characterization of Embryonic and Adult Epicardium and Epicardium-Derived Cells. Methods in Molecular Biology, 2012, 843, 155-168.	0.9	22
141	Regional differences in WT-1 and Tcf21 expression during ventricular development: implications for myocardial compaction. PLoS ONE, 2015, 10, e0136025.	2.5	22
142	Gene therapy for inherited arrhythmias. Cardiovascular Research, 2020, 116, 1635-1650.	3.8	20
143	Transcription Factor GATA4 Is Activated but Not Required for Insulin-like Growth Factor 1 (IGF1)-induced Cardiac Hypertrophy. Journal of Biological Chemistry, 2012, 287, 9827-9834.	3.4	19
144	CASAAV: A CRISPRâ€Based Platform for Rapid Dissection of Gene Function In Vivo. Current Protocols in Molecular Biology, 2017, 120, 31.11.1-31.11.14.	2.9	19

#	Article	IF	Citations
145	Reprogramming Fibroblasts into Cardiomyocytes. New England Journal of Medicine, 2011, 364, 177-178.	27.0	18
146	Hippo Activation in Arrhythmogenic Cardiomyopathy. Circulation Research, 2014, 114, 402-405.	4.5	18
147	GATA Factors Promote ER Integrity and \hat{I}^2 -Cell Survival and Contribute to Type 1 Diabetes Risk. Molecular Endocrinology, 2014, 28, 28-39.	3.7	17
148	Intercalated disc protein ${\rm Xin}\hat{\rm I}^2$ is required for Hippo-YAP signaling in the heart. Nature Communications, 2020, 11, 4666.	12.8	16
149	Genetic and Epigenetic Control of Heart Development. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036756.	5.5	15
150	The architecture and function of cardiac dyads. Biophysical Reviews, 2020, 12, 1007-1017.	3.2	15
151	CHD4 is recruited by GATA4 and NKX2-5 to repress noncardiac gene programs in the developing heart. Genes and Development, 2022, 36, 468-482.	5.9	15
152	Developing insights into cardiac regeneration. Development (Cambridge), 2013, 140, 3933-3937.	2.5	14
153	GATA4 represses an ileal program of gene expression in the proximal small intestine by inhibiting the acetylation of histone H3, lysine 27. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1273-1282.	1.9	14
154	Current and future treatment approaches for Barth syndrome. Journal of Inherited Metabolic Disease, 2022, 45, 17-28.	3.6	14
155	A dynamic and integrated epigenetic program at distal regions orchestrates transcriptional responses to VEGFA. Genome Research, 2019, 29, 193-207.	5.5	13
156	L ARP7 Is a BRCA1ÂUbiquitinase Substrate and Regulates Genome Stability and Tumorigenesis. Cell Reports, 2020, 32, 107974.	6.4	13
157	Cardiac Expression of <i>ms1/STARS</i> , a Novel Gene Involved in Cardiac Development and Disease, Is Regulated by GATA4. Molecular and Cellular Biology, 2012, 32, 1830-1843.	2.3	12
158	Genetic Mosaics for Greater Precision in Cardiovascular Research. Circulation Research, 2018, 123, 27-29.	4.5	12
159	YAP/TEAD1 Complex Is a Default Repressor of Cardiac Toll-Like Receptor Genes. International Journal of Molecular Sciences, 2021, 22, 6649.	4.1	12
160	Modeling Inherited Arrhythmia Disorders Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circulation Journal, 2017, 81, 12-21.	1.6	11
161	Exercising engineered heart muscle to maturity. Nature Reviews Cardiology, 2018, 15, 383-384.	13.7	11
162	Ultrasound-guided Transthoracic Intramyocardial Injection in Mice. Journal of Visualized Experiments, 2014, , e51566.	0.3	10

#	Article	IF	CITATIONS
163	Releasing YAP From an α-Catenin Trap Increases Cardiomyocyte Proliferation. Circulation Research, 2015, 116, 9-11.	4.5	10
164	A new murine model of Barth syndrome neutropenia links TAFAZZIN deficiency to increased ER stress-induced apoptosis. Blood Advances, 2022, 6, 2557-2577.	5.2	10
165	CMYA5 establishes cardiac dyad architecture and positioning. Nature Communications, 2022, 13, 2185.	12.8	10
166	Two faces of bivalent domain regulate VEGFA responsiveness and angiogenesis. Cell Death and Disease, 2020, 11, 75.	6.3	9
167	Loss of Tsc1 in cerebellar Purkinje cells induces transcriptional and translation changes in FMRP target transcripts. ELife, $2021,10,10$	6.0	9
168	AAV Gene Transfer to the Heart. Methods in Molecular Biology, 2021, 2158, 269-280.	0.9	9
169	Preparation of rAAV9 to Overexpress or Knockdown Genes in Mouse Hearts. Journal of Visualized Experiments, $2016, , .$	0.3	8
170	Experimental models of Barth syndrome. Journal of Inherited Metabolic Disease, 2022, 45, 72-81.	3.6	8
171	Cardiac CIP protein regulates dystrophic cardiomyopathy. Molecular Therapy, 2021, , .	8.2	7
172	Transcription Factors and Heart Failure: Does the Stressed Heart Need a Hand?. Journal of Molecular and Cellular Cardiology, 2001, 33, 1765-1767.	1.9	6
173	The mysterious origins of coronary vessels. Cell Research, 2013, 23, 1063-1064.	12.0	6
174	Mature Cardiomyocytes Recall Their Progenitor Experience Via Polycomb Repressive Complex 2. Circulation Research, 2012, 111, 162-164.	4.5	5
175	HCN4 Charges Up the First Heart Field. Circulation Research, 2013, 113, 350-351.	4.5	5
176	Efficient In Vivo Homology-Directed Repair Within Cardiomyocytes. Circulation, 2022, 145, 787-789.	1.6	5
177	Ryanodine receptor 2 (RYR2) dysfunction activates the unfolded protein response and perturbs cardiomyocyte maturation. Cardiovascular Research, 2023, 119, 221-235.	3.8	5
178	Population Prevalence of Premature Truncating Variants in Plakophilin-2 and Association With Arrhythmogenic Right Ventricular Cardiomyopathy: A UK Biobank Analysis. Circulation Genomic and Precision Medicine, 2022, 15, 101161CIRCGEN121003507.	3.6	5
179	<title>Open-loop predictive control of plasma etching of tungsten using an in-situ film thickness sensor</title> ., 1992,,.		4
180	Identification of a Cardiac Disease Modifier Gene Using Forward Genetics in the Mouse. PLoS Genetics, 2009, 5, e1000643.	3 . 5	4

#	Article	IF	CITATIONS
181	Notching up vascular regeneration. Cell Research, 2014, 24, 777-778.	12.0	4
182	Introduction to the Special Issue on Heart Regeneration and Rejuvenation. Stem Cell Research, 2014, 13, 521-522.	0.7	3
183	Mammalian Myocardial Regeneration. , 2012, , 555-569.		2
184	Two sides of the same coin: new insights into mechanisms of ventricular fibrillation. Cardiovascular Research, 2021, 117, 983-984.	3.8	2
185	Calcific aortic valve disease: turning therapeutic discovery up a notch. Nature Reviews Cardiology, 2021, 18, 309-310.	13.7	2
186	Addendum: A tissue-engineered scale model of the heart ventricle. Nature Biomedical Engineering, 2022, 6, 1318-1318.	22.5	2
187	A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. Journal of Clinical Investigation, 2011, 121, 2060-2060.	8.2	0
188	Cardiac-Targeted TRPM7 Deletion Induces Heart Block and Cardiomyopathy via Disrupted Embryonic Ventricular Development. Biophysical Journal, 2012, 102, 344a.	0.5	0
189	Abstract 919: Intercalated Disk Protein Xin-beta is Required for the Hippo/YAP Signaling in the Heart. Circulation Research, 2019, 125, .	4.5	0
190	Cardiac ISL1-Interacting Protein, a Cardioprotective Factor, Inhibits the Transition From Cardiac Hypertrophy to Heart Failure. Frontiers in Cardiovascular Medicine, 2022, 9, 857049.	2.4	О