Ian G Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4573057/publications.pdf

Version: 2024-02-01

184 papers 13,237 citations

52 h-index 101 g-index

190 all docs

190 docs citations

190 times ranked 4953 citing authors

#	Article	IF	CITATIONS
1	Effect of Repeated Low-Level Red-Light Therapy for Myopia Control in Children. Ophthalmology, 2022, 129, 509-519.	5.2	83
2	China Turns to School Reform to Control the Myopia Epidemic: A Narrative Review. Asia-Pacific Journal of Ophthalmology, 2022, 11, 27-35.	2.5	31
3	Exposure to the Life of a School Child Rather Than Age Determines Myopic Shifts in Refraction in School Children. , 2022, 63, 15.		13
4	Correlation between smallâ€scale methylation changes and gene expression during the development of myopia. FASEB Journal, 2022, 36, e22129.	0.5	4
5	Highlights from the 2019 International Myopia Summit on  controversies in myopia'. British Journal of Ophthalmology, 2021, 105, 1196-1202.	3.9	11
6	Animal Models of Experimental Myopia: Limitations and Synergies with Studies on Human Myopia., 2021,, 67-85.		0
7	A Peer-to-Peer Live-Streaming Intervention for Children During COVID-19 Homeschooling to Promote Physical Activity and Reduce Anxiety and Eye Strain: Cluster Randomized Controlled Trial. Journal of Medical Internet Research, 2021, 23, e24316.	4.3	47
8	Coadministration With Carbidopa Enhances the Antimyopic Effects of Levodopa in Chickens., 2021, 62, 25.		6
9	IMI Risk Factors for Myopia. , 2021, 62, 3.		143
10	IMI 2021 Reports and Digest – Reflections on the Implications for Clinical Practice. , 2021, 62, 1.		9
11	IMI Prevention of Myopia and Its Progression. , 2021, 62, 6.		136
12	Eyes grow towards mild hyperopia rather than emmetropia in Chinese preschool children. Acta Ophthalmologica, 2021, 99, e1274-e1280.	1.1	13
13	Reducing the Global Burden of Myopia by Delaying the Onset of Myopia and Reducing Myopic Progression in Children. Ophthalmology, 2021, 128, 816-826.	5.2	55
14	Insights into the mechanism by which atropine inhibits myopia: evidence against cholinergic hyperactivity and modulation of dopamine release. British Journal of Pharmacology, 2021, 178, 4501-4517.	5.4	13
15	Transcriptomeâ€based insights into gene networks controlling myopia prevention. FASEB Journal, 2021, 35, e21846.	0.5	9
16	Levodopa inhibits the development of lens-induced myopia in chicks. Scientific Reports, 2020, 10, 13242.	3.3	19
17	Increased Time Outdoors Is Followed by Reversal of the Long-Term Trend to Reduced Visual Acuity in Taiwan Primary School Students. Ophthalmology, 2020, 127, 1462-1469.	5.2	53
18	Risk Factors for Myopia: Putting Causal Pathways into a Social Context. , 2020, , 133-170.		7

#	Article	IF	Citations
19	Prevention of myopia, China. Bulletin of the World Health Organization, 2020, 98, 435-437.	3.3	26
20	Cycloplegic refraction by 1% cyclopentolate in young adults: is it the gold standard? The Anyang University Students Eye Study (AUSES)Â. British Journal of Ophthalmology, 2019, 103, 654-658.	3.9	33
21	Effectiveness and safety of topical levodopa in a chick model of myopia. Scientific Reports, 2019, 9, 18345.	3.3	21
22	Myopia: is the natureâ€nurture debate finally over?. Australasian journal of optometry, The, 2019, 102, 3-17.	1.3	77
23	Myopia in low-resource settings. Community Eye Health Journal, 2019, 32, 11.	0.4	0
24	The epidemics of myopia: Aetiology and prevention. Progress in Retinal and Eye Research, 2018, 62, 134-149.	15.5	658
25	Methodology of the ZOC-BHVI High Myopia Cohort Study: The Onset and Progression of Myopic Pathologies and Associated Risk Factors in Highly Myopic Chinese. Ophthalmic Epidemiology, 2018, 25, 31-38.	1.7	17
26	Possible Causes of Discordance in Refraction in Monozygotic Twins: Nearwork, Time Outdoors and Stochastic Variation., 2018, 59, 5349.		10
27	Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study. PLoS Medicine, 2018, 15, e1002674.	8.4	93
28	Distribution and Severity of Myopic Maculopathy Among Highly Myopic Eyes., 2018, 59, 4880.		46
29	Myopia Prevention and Outdoor Light Intensity in a School-based Cluster Randomized Trial. Ophthalmology, 2018, 125, 1251-1252.	5.2	14
30	Intense schooling linked to myopia. BMJ: British Medical Journal, 2018, 361, k2248.	2.3	26
31	Three-Dimensional Eye Shape, Myopic Maculopathy, and Visual Acuity: The Zhongshan Ophthalmic Center–Brien Holden Vision Institute High Myopia Cohort Study. Ophthalmology, 2017, 124, 679-687.	5.2	44
32	EPIDEMIC OF PATHOLOGIC MYOPIA. Retina, 2017, 37, 989-997.	1.7	83
33	Significant Axial Elongation with Minimal Change in Refraction in 3- to 6-Year-Old Chinese Preschoolers. Ophthalmology, 2017, 124, 1826-1838.	5.2	89
34	Green spaces and spectacles use in schoolchildren in Barcelona. Environmental Research, 2017, 152, 256-262.	7. 5	42
35	Bright Light Blocks the Development of Form Deprivation Myopia in Mice, Acting on D1 Dopamine Receptors. , 2017, 58, 2317.		11
36	Traffic-related air pollution and spectacles use in schoolchildren. PLoS ONE, 2017, 12, e0167046.	2.5	25

#	Article	IF	Citations
37	Pilot study of a novel classroom designed to prevent myopia by increasing children's exposure to outdoor light. PLoS ONE, 2017, 12, e0181772.	2.5	36
38	Six-year changes in refraction and related ocular biometric factors in an adult Chinese population. PLoS ONE, 2017, 12, e0183364.	2.5	25
39	Identifying Children at Risk of High Myopia Using Population Centile Curves of Refraction. PLoS ONE, 2016, 11, e0167642.	2.5	28
40	Inverse relationship between sleep duration and myopia. Acta Ophthalmologica, 2016, 94, e204-10.	1.1	86
41	Myopia. Asia-Pacific Journal of Ophthalmology, 2016, 5, 383-385.	2.5	1
42	What Public Policies Should Be Developed to Deal with the Epidemic of Myopia?. Optometry and Vision Science, 2016, 93, 1058-1060.	1.2	36
43	An Important Step Forward in Myopia Prevention: Low-Dose Atropine. Ophthalmology, 2016, 123, 232-233.	5.2	20
44	School-Based Myopia Prevention Effortâ€"Reply. JAMA - Journal of the American Medical Association, 2016, 315, 820.	7.4	0
45	Yunnan Minority Eye Study Suggests That Ethnic Differences in Myopia Are Due to Different Environmental Exposures. , 2015, 56, 4430.		5
46	Normative Distribution of Visual Acuity in 3- to 6-Year-Old Chinese Preschoolers: The Shenzhen Kindergarten Eye Study., 2015, 56, 1985.		21
47	Disordered Sleep and Myopia Risk among Chinese Children. PLoS ONE, 2015, 10, e0121796.	2.5	49
48	Cycloplegic refraction is the gold standard for epidemiological studies. Acta Ophthalmologica, 2015, 93, 581-585.	1.1	133
49	Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China. JAMA - Journal of the American Medical Association, 2015, 314, 1142.	7.4	667
50	Factors Underlying Different Myopia Prevalence between Middle- and Low-income Provinces in China. Ophthalmology, 2015, 122, 1060-1062.	5.2	15
51	Prevalence of Amblyopia in School-Aged Children and Variations by Age, Gender, andÂEthnicity in a Multi-Country RefractiveÂError Study. Ophthalmology, 2015, 122, 1924-1931.	5.2	72
52	Hyperopia and lens power in an adult population: The shahroud eye study. Journal of Ophthalmic and Vision Research, 2015, 10, 400.	1.0	3
53	ALSPAC Study Does Not Support a Role for Vitamin D in the Prevention of Myopia. Investigative Ophthalmology and Visual Science, 2014, 55, 8559-8559.	3.3	3
54	Lens Power in a Population-Based Cross-Sectional Sample of Adults Aged 40 to 64 Years in the Shahroud Eye Study. , 2014, 55, 1031.		19

#	Article	IF	CITATIONS
55	Two-Year Changes in Refractive Error and Related Biometric Factors in an Adult Chinese Population. JAMA Ophthalmology, 2014, 132, 978.	2.5	10
56	Calculation of crystalline lens power in chickens with a customized version of Bennett's equation. Vision Research, 2014, 96, 33-38.	1.4	12
57	Animal Models of Experimental Myopia: Limitations and Synergies with Studies on Human Myopia. , 2014, , 39-58.		7
58	Patterns of myopigenic activities with age, gender and ethnicity in <scp>S</scp> ydney schoolchildren. Ophthalmic and Physiological Optics, 2013, 33, 318-328.	2.0	51
59	Risk Factors for Incident Myopia in Australian Schoolchildren. Ophthalmology, 2013, 120, 2100-2108.	5.2	246
60	Prevalence and 5- to 6-Year Incidence and Progression of Myopia and Hyperopia in Australian Schoolchildren. Ophthalmology, 2013, 120, 1482-1491.	5.2	164
61	Biometric measurements in highly myopic eyes. Journal of Cataract and Refractive Surgery, 2013, 39, 180-187.	1.5	34
62	Time outdoors and the prevention of myopia. Experimental Eye Research, 2013, 114, 58-68.	2.6	271
63	Increases in the prevalence of reduced visual acuity and myopia in Chinese children in Guangzhou over the past 20 years. Eye, 2013, 27, 1353-1358.	2.1	48
64	Birth Order and Myopia: What are the Messages to Readers?. Ophthalmic Epidemiology, 2013, 20, 333-334.	1.7	5
65	Form deprivation and lensâ€induced myopia: are they different?. Ophthalmic and Physiological Optics, 2013, 33, 355-361.	2.0	45
66	Myopia and international educational performance. Ophthalmic and Physiological Optics, 2013, 33, 329-338.	2.0	112
67	Refractive Errors in 3–6 Year-Old Chinese Children: A Very Low Prevalence of Myopia?. PLoS ONE, 2013, 8, e78003.	2.5	64
68	Prevalence and Risk Factors for Refractive Errors: Korean National Health and Nutrition Examination Survey 2008-2011. PLoS ONE, 2013, 8, e80361.	2.5	81
69	Crystalline Lens Power and Refractive Error. , 2012, 53, 543.		32
70	The Impact of Parental Myopia on Myopia in Chinese Children. Optometry and Vision Science, 2012, 89, 1487-1496.	1.2	52
71	The Impact of Severity of Parental Myopia on Myopia in Chinese Children. Optometry and Vision Science, 2012, 89, 884-891.	1.2	26
72	Myopia. Lancet, The, 2012, 379, 1739-1748.	13.7	1,334

#	Article	IF	CITATIONS
73	Annual Changes in Refractive Errors and Ocular Components before and after the Onset of Myopia in Chinese Children. Ophthalmology, 2012, 119, 1478-1484.	5.2	87
74	Changes in Lens Power in Singapore Chinese Children during Refractive Development., 2012, 53, 5124.		70
75	Comparison of Refraction and Ocular Biometry in European Caucasian Children Living in Northern Ireland and Sydney, Australia., 2012, 53, 4021.		42
76	Validity of noncycloplegic refraction in the assessment of refractive errors: the Tehran Eye Study. Acta Ophthalmologica, 2012, 90, 380-386.	1.1	91
77	Retinal pathways involved in the control of eye growth and myopia. Acta Ophthalmologica, 2012, 90, 0-0.	1.1	O
78	Gene-Environment Interactions in the Aetiology of Myopia., 2010,, 45-61.		1
79	Prevalence of heterophoria and associations with refractive error, heterotropia and ethnicity in Australian school children. British Journal of Ophthalmology, 2010, 94, 542-546.	3.9	37
80	Increased hyperopia with ageing based on cycloplegic refractions in adults: the Tehran Eye Study. British Journal of Ophthalmology, 2010, 94, 20-23.	3.9	29
81	Distribution of Axial Length and Ocular Biometry Measured Using Partial Coherence Laser Interferometry (IOL Master) in an Older White Population. Ophthalmology, 2010, 117, 417-423.	5.2	121
82	Is emmetropia the natural endpoint for human refractive development? An analysis of populationâ€based data from the refractive error study in children (RESC). Acta Ophthalmologica, 2010, 88, 877-884.	1.1	68
83	Changes in retinal $\hat{l}\pm B$ -crystallin (cryab) RNA transcript levels during periods of altered ocular growth in chickens. Experimental Eye Research, 2010, 90, 238-243.	2.6	16
84	Alterations in ZENK and glucagon RNA transcript expression during increased ocular growth in chickens. Molecular Vision, 2010, 16, 639-49.	1.1	27
85	Changes in the expression of Pax6 RNA transcripts in the retina during periods of altered ocular growth in chickens. Experimental Eye Research, 2009, 89, 392-397.	2.6	10
86	Ethnic differences in refraction and ocular biometry in a population-based sample of 11–15-year-old Australian children. Eye, 2008, 22, 649-656.	2.1	165
87	Outdoor Activity Reduces the Prevalence of Myopia in Children. Ophthalmology, 2008, 115, 1279-1285.	5.2	944
88	Myopia, Lifestyle, and Schooling in Students of Chinese Ethnicity in Singapore and Sydney. JAMA Ophthalmology, 2008, 126, 527.	2.4	327
89	Role of Near Work in Myopia: Findings in a Sample of Australian School Children. , 2008, 49, 2903.		423
90	Myopia and the Urban Environment: Findings in a Sample of 12-Year-Old Australian School Children. , 2008, 49, 3858.		158

#	Article	lF	Citations
91	Ethnic Differences in the Impact of Parental Myopia: Findings from a Population-Based Study of 12-Year-Old Australian Children., 2007, 48, 2520.		125
92	Astigmatism in 12-Year-Old Australian Children: Comparisons with a 6-Year-Old Population. , 2007, 48, 73.		72
93	Necessity of Cycloplegia for Assessing Refractive Error in 12-Year-Old Children: A Population-Based Study. American Journal of Ophthalmology, 2007, 144, 307-309.	3.3	124
94	Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia. Experimental Eye Research, 2007, 84, 100-107.	2.6	174
95	A muscarinic cholinergic antagonist and a dopamine agonist rapidly increase ZENK mRNA expression in the form-deprived chicken retina. Experimental Eye Research, 2007, 85, 15-22.	2.6	68
96	Variation of the Contribution from Axial Length and Other Oculometric Parameters to Refraction by Age and Ethnicity., 2007, 48, 4846.		124
97	School grades and myopia. Ophthalmic and Physiological Optics, 2007, 27, 126-129.	2.0	72
98	Diurnal patterns of dopamine release in chicken retina. Neurochemistry International, 2006, 48, 17-23.	3.8	59
99	Neurosteroids Involved in Regulating Inhibition in the Inferior Colliculus. Journal of Neurophysiology, 2006, 96, 3064-3073.	1.8	19
100	Astigmatism and Its Components in 6-Year-Old Children. , 2006, 47, 55.		76
101	How genetic is school myopia?. Progress in Retinal and Eye Research, 2005, 24, 1-38.	15.5	540
102	Effect of Stature and Other Anthropometric Parameters on Eye Size and Refraction in a Population-Based Study of Australian Children., 2005, 46, 4424.		62
103	Distribution of Ocular Biometric Parameters and Refraction in a Population-Based Study of Australian Children., 2005, 46, 2748.		184
104	Methods for a Population-Based Study of Myopia and Other Eye Conditions in School Children: The Sydney Myopia Study. Ophthalmic Epidemiology, 2005, 12, 59-69.	1.7	188
105	Impact of Birth Parameters on Eye Size in a Population-Based Study of 6-Year-Old Australian Children. American Journal of Ophthalmology, 2005, 140, 535.e1-535.e.	3.3	36
106	Inhibitory modulation of photoreceptor melatonin synthesis via a nitric oxide-mediated mechanism. Neurochemistry International, 2004, 45, 1143-1153.	3.8	9
107	Screening for Differential Gene Expression During the Development of Form-Deprivation Myopia in the Chicken. Optometry and Vision Science, 2004, 81, 148-155.	1.2	23
108	Prevalence of undetected ocular conditions in a pilot sample of school children. Clinical and Experimental Ophthalmology, 2003, 31, 237-240.	2.6	17

#	Article	IF	CITATIONS
109	The biological basis of myopic refractive error. Australasian journal of optometry, The, 2003, 86, 276-288.	1.3	95
110	High heritability of myopia does not preclude rapid changes in prevalence. Clinical and Experimental Ophthalmology, 2002, 30, 168-172.	2.6	57
111	Vitreal dihydroxyphenylacetic acid (DOPAC) as an index of retinal dopamine release. Journal of Neurochemistry, 2001, 76, 1636-1644.	3.9	52
112	The increasing prevalence of myopia: implications for Australia. Clinical and Experimental Ophthalmology, 2001, 29, 116-120.	2.6	108
113	Localization of voltage-sensitive L-type calcium channels in the chicken retina. Clinical and Experimental Ophthalmology, 2001, 29, 183-187.	2.6	35
114	Colchicine causes excessive ocular growth and myopia in chicks. Vision Research, 1999, 39, 685-697.	1.4	65
115	Cholinergic amacrine cells are not required for the progression and atropine-mediated suppression of form-deprivation myopia. Brain Research, 1998, 794, 48-60.	2.2	79
116	A fundamental stepâ€transition in retinal function at low light intensities. Australian and New Zealand Journal of Ophthalmology, 1997, 25, 70-72.	0.4	1
117	Development of the enkephalin-, neurotensin- and somatostatin-like (ENSLI) amacrine cells in the chicken retina. Developmental Brain Research, 1997, 101, 57-65.	1.7	11
118	Light controls scleral precursor synthesis. NeuroReport, 1996, 7, 2010-2012.	1.2	8
119	Are there rhythms in scleral precursor synthesis?. Australian and New Zealand Journal of Ophthalmology, 1996, 24, 45-47.	0.4	1
120	Complexity of dopaminergic function in the retinal darkâ€light switch. Australian and New Zealand Journal of Ophthalmology, 1996, 24, 56-58.	0.4	9
121	The effect of form deprivation on retinal leuâ€enkephalin levels is mediated by a rodâ€driven pathway. Australian and New Zealand Journal of Ophthalmology, 1996, 24, 58-60.	0.4	4
122	Nitric oxide donors mimic the effects of light on photoreceptor melatonin synthesis. Australian and New Zealand Journal of Ophthalmology, 1996, 24, 61-63.	0.4	4
123	A circadian component of the retinal darkâ€light switch. Australian and New Zealand Journal of Ophthalmology, 1996, 24, 85-87.	0.4	0
124	A retinal dark-light switch: A review of the evidence. Visual Neuroscience, 1996, 13, 399-409.	1.0	66
125	Parallel suppression of retinal and pineal melatonin synthesis by retinally mediated light. NeuroReport, 1995, 6, 1530-1532.	1.2	20
126	Pineal activity is under the control of retinal D1-dopaminergic pathways. NeuroReport, 1995, 6, 446-448.	1.2	15

#	Article	IF	CITATIONS
127	Neural barriers affect the action of nitric oxide synthase inhibitors in the intact chicken retina. Neuroscience Letters, 1995, 201, 17-20.	2.1	7
128	Somatostatin-14 and somatostatin-28 levels are light-driven and vary during development in the chicken retina. Developmental Brain Research, 1994, 78, 65-69.	1.7	5
129	Endogenous dopamine inhibits the release of enkephalin-like immunoreactivity from amacrine cells of the chicken retina in the light. Brain Research, 1994, 645, 240-246.	2.2	17
130	A role for the enkephalin-immunoreactive amacrine cells of the chicken retina in adaptation to light and dark. Neuroscience Letters, 1994, 174, 64-66.	2.1	15
131	Is nitric oxide a transmitter of the centrifugal projection to the avian retina?. Neuroscience Letters, 1994, 168, 5-7.	2.1	42
132	[Leu5]enkephalin-like immunoreactive amacrine cells are under nicotinic excitatory control during darkness in chicken retina. Brain Research, 1993, 624, 137-142.	2.2	10
133	Thy-1 antigen is specific to ganglion cells in chicks. Neuroscience Letters, 1991, 123, 87-90.	2.1	16
134	Glycinergic control of [Leu5]enkephalin levels in chicken retina. Brain Research, 1991, 557, 221-226.	2.2	10
135	Chapter 8 What do amacrine cells do?. Progress in Retinal and Eye Research, 1991, 11, 193-214.	0.8	12
136	How peptidergic neurons cope with variation in physiological stimulation. Neurochemical Research, 1991, 16, 705-714.	3.3	16
137	A quantitative analysis of the effects of excitatory neurotoxins on retinal ganglion cells in the chick. Visual Neuroscience, 1990, 4, 217-223.	1.0	32
138	Light inhibits the release of both [Met5]enkephalin and [Met5]enkephalin-containing peptides in chicken retina, but not their syntheses. Neuroscience, 1990, 38, 187-193.	2.3	17
139	Identification of kainic and quisqualic acid receptors on inner retinal cells of the salamander Ambystoma mexicanum. European Journal of Pharmacology, 1990, 184, 143-150.	3.5	0
140	Selective abolition of OFF responses in kainic acid-lesioned chicken retina. Brain Research, 1990, 535, 288-300.	2,2	7
141	Co-lamination of cholinergic amacrine cell and displaced ganglion cell dendrites in the chicken retina. Neuroscience Letters, 1989, 103, 151-156.	2.1	11
142	Putative serotonergic bipolar and amacrine cells in the chicken retina. Brain Research, 1988, 439, 77-87.	2,2	32
143	Specific ganglion cell death induced by intravitreal kainic acid in the chicken retina. Brain Research, 1987, 415, 342-346.	2.2	14
144	Intravitreal kainic acid severely reduces the size of the developing optic tectum in newly hatched chickens. Brain Research, 1987, 435, 153-159.	2.2	4

#	Article	IF	Citations
145	Cholinergic amacrine cells in the rabbit retina synapse onto other cholinergic amacrine cells. Neuroscience Letters, 1987, 74, 281-285.	2.1	65
146	AMPA is a powerful neurotoxin in the chicken retina. Neuroscience Letters, 1987, 79, 267-271.	2.1	19
147	Cholinergic amacrine cells of the chicken retina: A light and electron microscope immunocytochemical study. Neuroscience, 1987, 21, 725-743.	2.3	91
148	The toxic effects of ethylcholine mustard aziridinium ion on cholinergic cells in the chicken retina. Journal of Neuroscience, 1987, 7, 343-356.	3.6	41
149	Localization of choline acetyltransferase-like immunoreactivity in the embryonic chick retina. Journal of Comparative Neurology, 1987, 260, 526-538.	1.6	87
150	Somatostatin-immunoreactive amacrine cells of chicken retina: Retinal mosaic, ultrastructural features, and light-driven variations in peptide metabolism. Neuroscience, 1986, 17, 1217-1233.	2.3	39
151	Ethylcholine mustard aziridinium ion: a cholinotoxin of the retina in vivo. Trends in Pharmacological Sciences, 1986, 7, 265-266.	8.7	3
152	Cholinergic and acetylcholinesterase-containing neurons of the chicken retina. Neuroscience Letters, 1985, 61, 311-316.	2.1	69
153	The concentration of enkephalin-like material in the chick retina is light dependent. Neuroscience, 1984, 13, 221-226.	2.3	22
154	A physiologically active kainic acid-preferring receptor in chicken retina. Neuroscience Letters, 1984, 44, 299-304.	2.1	14
155	Intravitreal kainic acid permanently eliminates off-pathways from chicken retina. Neuroscience Letters, 1983, 36, 249-253.	2.1	33
156	Dose-dependent effects of intravitreal kainic acid on specific cell types in chicken retina. Neuroscience, 1983, 9, 165-181.	2.3	69
157	Chapter 10 Kainic acid as a tool in retinal research. Progress in Retinal and Eye Research, 1983, 2, 249-266.	0.8	31
158	The development of amacrine cells containing somatostatin-like immunoreactivity in chicken retina. Developmental Brain Research, 1983, 8, 71-76.	1.7	19
159	The Organization of Amacrine Cell Types Which Use Different Transmitters in Chicken Retina. Progress in Brain Research, 1983, 58, 191-199.	1.4	9
160	Folic acid derivatives do not reproduce the neurotoxic effects of kainic acid on chicken retina. Neuroscience Letters, 1982, 34, 69-73.	2.1	10
161	Ganglion cells of chicken retina possess nicotinic rather than muscarinic acetylcholine receptors. Neurochemical Research, 1982, 7, 267-274.	3.3	20
162	The effects of colchicine and vinblastine on memory in chicks. Behavioural Brain Research, 1981, 2, 301-322.	2.2	8

#	Article	IF	CITATIONS
163	Kainic acid affects both plexiform layers of chicken retina. Neuroscience Letters, 1981, 21, 275-280.	2.1	65
164	Discrete distributions of putative cholinergic and somatostatinergic amacrine cell dendrites in chicken retina. Neuroscience Letters, 1981, 27, 55-60.	2.1	17
165	Phenobarbitone binding sites in rat brain synaptosomal membranes. Neuroscience Letters, 1981, 24, 301-306.	2.1	17
166	Intraocular colchicine selectively destroys immature ganglion cells in chicken retina. Neuroscience Letters, 1981, 24, 255-260.	2.1	30
167	Somatostatin-like immunoreactivity in amacrine cells of the chicken retina. Neuroscience, 1981, 6, 689-695.	2.3	71
168	Retinal benzodiazepine receptors are destroyed by kainic acid lesions. Neuroscience Letters, 1980, 20, 147-152.	2.1	4
169	Kainic acid destroys displaced amacrine cells in post-hatch chicken retina. Neuroscience Letters, 1980, 17, 43-48.	2.1	69
170	A possible role of the phosphorylation of synaptic membrane proteins in the control of calcium ion permeability. Biochimica Et Biophysica Acta - Biomembranes, 1977, 465, 527-534.	2.6	39
171	Synaptosomes and cell separation. Neuroscience, 1976, 1, 159-165.	2.3	56
172	Localization in the synaptic junction of the cyclic amp stimulated intrinsic protein kinase activity of synaptosomal plasma membranes. Biochimica Et Biophysica Acta - Biomembranes, 1976, 433, 223-227.	2.6	36
173	Distribution of protein kinase activities in subcellular fractions of rat brain. Biochimica Et Biophysica Acta - Biomembranes, 1976, 436, 675-685.	2.6	31
174	Synaptosomal plasma membrane glycoproteins: Fractionation by affinity chromatography on concanavalin A. Brain Research, 1975, 83, 337-348.	2.2	88
175	The chemical structure of synaptic membranes. Brain Research, 1973, 62, 405-411.	2.2	121
176	Common glycoproteins of synaptic vesicles and the synaptosomal plasma membrane. FEBS Letters, 1972, 22, 253-256.	2.8	28
177	Sub-synaptosomal localization of brain particulate neuraminidase. Brain Research, 1972, 47, 515-518.	2.2	102
178	The presence of 2', 3'-cyclic AMP 3'-phosphohydrolase in glial cells in tissue culture. Journal of Neurochemistry, 1972, 19, 881-883.	3.9	141
179	The docosahexaenoic acid of the phospholipids of synaptic membranes, vesicles and mitochondria. Brain Research, 1971, 33, 581-583.	2.2	37
180	The synaptosomal plasma membrane: protein and glycoprotein composition. Brain Research, 1971, 34, 403-406.	2.2	40

#	Article	IF	CITATIONS
181	Protein syntheis in brain mitochondrial and synaptosomal preparations. FEBS Letters, 1970, 10, 273-275.	2.8	30
182	SYNAPTOSOMAL PROTEIN SYNTHESIS IN A CELL-FREE SYSTEM. Journal of Neurochemistry, 1968, 15, 41-51.	3.9	157
183	INCORPORATION OF14C-LABELLED LEUCINE INTO SYNAPTOSOMES FROM RAT CEREBRAL CORTEX IN VITRO. Journal of Neurochemistry, 1967, 14, 377-387.	3.9	126
184	Myopia Progression in Children During COVID-19 Home Confinement in Argentina. SSRN Electronic Journal, 0, , .	0.4	5