Charles M Kenerley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4572647/publications.pdf

Version: 2024-02-01

126907 133252 5,913 61 33 59 citations g-index h-index papers 62 62 62 3981 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adhesion as a Focus in Trichoderma–Root Interactions. Journal of Fungi (Basel, Switzerland), 2022, 8, 372.	3.5	6
2	Early Transcriptome Response of Trichoderma virens to Colonization of Maize Roots. Frontiers in Fungal Biology, $2021, 2, \ldots$	2.0	3
3	Oxylipins Other Than Jasmonic Acid Are Xylem-Resident Signals Regulating Systemic Resistance Induced by <i>Trichoderma virens</i>	6.6	91
4	Deletion of the Trichoderma virens NRPS, Tex7, induces accumulation of the anti-cancer compound heptelidic acid. Biochemical and Biophysical Research Communications, 2020, 529, 672-677.	2.1	7
5	Trichoderma virens colonization of maize roots triggers rapid accumulation of 12-oxophytodienoate and two áµ§-ketols in leaves as priming agents of induced systemic resistance. Plant Signaling and Behavior, 2020, 15, 1792187.	2.4	15
6	Effects on hyphal morphology and development by the putative copper radical oxidase glx1 in Trichoderma virens suggest a novel role as a cell wall associated enzyme. Fungal Genetics and Biology, 2019, 131, 103245.	2.1	6
7	Differential expression analysis of Trichoderma virens RNA reveals a dynamic transcriptome during colonization of Zea mays roots. BMC Genomics, 2019, 20, 280.	2.8	33
8	Analysis of a putative glycosylation site in the Trichoderma virens elicitor SM1 reveals no role in protein dimerization. Biochemical and Biophysical Research Communications, 2019, 509, 817-821.	2.1	6
9	Characterization of <i>Sclerotinia minor</i> populations in Texas peanut fields. Plant Pathology, 2018, 67, 839-847.	2.4	6
10	Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochemical and Biophysical Research Communications, 2018, 505, 606-611.	2.1	51
11	A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens. Fungal Biology, 2015, 119, 476-486.	2.5	41
12	Secretome of Trichoderma Interacting With Maize Roots: Role in Induced Systemic Resistance*. Molecular and Cellular Proteomics, 2015, 14, 1054-1063.	3.8	95
13	Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots. BMC Genomics, 2015, 16, 8.	2.8	76
14	Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology (United Kingdom), 2014, 160, 2319-2330.	1.8	86
15	<i>Trichoderma</i> Research in the Genome Era. Annual Review of Phytopathology, 2013, 51, 105-129.	7.8	370
16	A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genetics and Biology, 2013, 56, 67-77.	2.1	81
17	Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology (United Kingdom), 2012, 158, 155-165.	1.8	137
18	Secondary metabolism in Trichoderma – a genomic perspective. Microbiology (United Kingdom), 2012, 158, 35-45.	1.8	288

#	Article	IF	Citations
19	Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 2011, 9, 749-759.	28.6	814
20	Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 2011, 12, R40.	8.8	594
21	Silencing <i>GhNDR1</i> and <i>GhMKK2</i> compromises cotton resistance to Verticillium wilt. Plant Journal, 2011, 66, 293-305.	5.7	222
22	Functional characterization of a plantâ€like sucrose transporter from the beneficial fungus <i>Trichoderma virens</i> . Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. New Phytologist, 2011, 189, 777-789.	7.3	74
23	Two Classes of New Peptaibols Are Synthesized by a Single Non-ribosomal Peptide Synthetase of Trichoderma virens. Journal of Biological Chemistry, 2011, 286, 4544-4554.	3.4	97
24	Regulation of Morphogenesis and Biocontrol Properties in <i>Trichoderma virens </i> by a VELVET Protein, Vel1. Applied and Environmental Microbiology, 2010, 76, 2345-2352.	3.1	135
25	Expression and purification of biologically active Trichoderma virens proteinaceous elicitor Sm1 in Pichia pastoris. Protein Expression and Purification, 2010, 72, 131-138.	1.3	40
26	Plant-Derived Sucrose Is a Key Element in the Symbiotic Association between <i>Trichoderma virens</i> and Maize Plants Â. Plant Physiology, 2009, 151, 792-808.	4.8	203
27	Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. Planta, 2009, 230, 277-291.	3.2	83
28	Formulating variable carrying capacity by exploring a resource dynamics-based feedback mechanism underlying the population growth models. Ecological Complexity, 2009, 6, 403-412.	2.9	14
29	Competitiveness of a Genetically Engineered Strain of Trichoderma virens. Mycopathologia, 2008, 166, 51-59.	3.1	4
30	Microbial Degradation of Fluometuron Is Influenced by Roundup WeatherMAX. Journal of Agricultural and Food Chemistry, 2008, 56, 8588-8593.	5.2	8
31	Dimerization Controls the Activity of Fungal Elicitors That Trigger Systemic Resistance in Plants. Journal of Biological Chemistry, 2008, 283, 19804-19815.	3.4	102
32	A Proteinaceous Elicitor Sm1 from the Beneficial Fungus <i>Trichoderma virens</i> Is Required for Induced Systemic Resistance in Maize. Plant Physiology, 2007, 145, 875-889.	4.8	286
33	Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing ?-1,3-and ?-1,6-glucanase genes. Molecular Plant Pathology, 2007, 8, 469-480.	4.2	68
34	The 18mer peptaibols from <i>Trichoderma virens</i> elicit plant defence responses. Molecular Plant Pathology, 2007, 8, 737-746.	4.2	218
35	Tvbgn3, a \hat{I}^2 -1,6-Glucanase from the Biocontrol Fungus Trichoderma virens, Is Involved in Mycoparasitism and Control of Pythium ultimum. Applied and Environmental Microbiology, 2006, 72, 7661-7670.	3.1	87
36	Sm1, a Proteinaceous Elicitor Secreted by the Biocontrol Fungus Trichoderma virens Induces Plant Defense Responses and Systemic Resistance. Molecular Plant-Microbe Interactions, 2006, 19, 838-853.	2.6	310

#	Article	IF	CITATIONS
37	Density independent population dynamics by Trichoderma virensin soil and defined substrates. Biocontrol Science and Technology, 2005, 15, 847-857.	1.3	11
38	Fitness, persistence, and responsiveness of a genetically engineered strain of Trichoderma virens in soil mesocosms. Applied Soil Ecology, 2005, 29, 125-134.	4.3	23
39	Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genetics and Biology, 2004, 41, 336-348.	2.1	125
40	Utilizing Aboveground Rhizotrons to Study Root Growth and Pathogen Movement in Simulated Orchard Conditions. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 798B-798.	1.0	0
41	Seasonal Influence on Infection Rates of Malus sylvestris var. domestica Roots by Phymatotrichopsis omnivora. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 747A-747.	1.0	0
42	Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnology Journal, 2003, 1, 321-336.	8.3	142
43	Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15965-15970.	7.1	128
44	Identification of Peptaibols from Trichoderma virens and Cloning of a Peptaibol Synthetase. Journal of Biological Chemistry, 2002, 277, 20862-20868.	3.4	202
45	Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Current Genetics, 2002, 40, 374-384.	1.7	119
46	A logistic model of subsurface fungal growth with application to bioremediation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2000, 35, 465-488.	1.7	9
47	Measurement of Apple Root Losses Associated with Cold Storage and Elutriation of Soil Core Samples. HortTechnology, 2000, 10, 580-584.	0.9	2
48	Detection and enumeration of a genetically modified fungus in soil environments by quantitative competitive polymerase chain reaction. FEMS Microbiology Ecology, 1998, 25, 419-428.	2.7	27
49	Thearg2Gene ofTrichoderma virens:Cloning and Development of a Homologous Transformation System. Fungal Genetics and Biology, 1998, 23, 34-44.	2.1	76
50	Detection and enumeration of a genetically modified fungus in soil environments by quantitative competitive polymerase chain reaction. FEMS Microbiology Ecology, 1998, 25, 419-428.	2.7	3
51	Enhanced expression of a bacterial gene for pesticide degradation in a common soil fungus. Journal of Bioscience and Bioengineering, 1996, 81, 473-481.	0.9	25
52	Expression of organophosphate hydrolase in the filamentous fungus Gliocladium virens. Applied Microbiology and Biotechnology, 1994, 41, 352-358.	3 . 6	32
53	Expression of organophosphate hydrolase in the filamentous fungus Gliocladium virens. Applied Microbiology and Biotechnology, 1994, 41, 352-358.	3.6	2
54	Inoculum dynamics ofGliocladium virens associated with roots of cotton seedlings. Microbial Ecology, 1992, 23, 169-179.	2.8	22

#	Article	IF	CITATION
55	Production of gliotoxin by Gliocladium virens as a function of source and concentration of carbon and nitrogen. Mycological Research, 1991, 95, 1242-1248.	2.5	13
56	Transformation of the mycoparasite Gliocladium. Current Genetics, 1989, 15, 415-420.	1.7	23
57	Cotton Fleahopper and Associated Microorganisms as Components in the Production of Stress Ethylene by Cotton. Plant Physiology, 1988, 87, 280-285.	4.8	12
58	Positional variation in phylloplane microbial populations within an apple tree canopy. Microbial Ecology, 1980, 6, 71-84.	2.8	49
59	Microbial populations associated with buds and young leaves of apple. Canadian Journal of Botany, 1980, 58, 847-855.	1.1	25
60	The effects of a pesticide program on microbial populations from apple leaf litter. Canadian Journal of Microbiology, 1979, 25, 1331-1344.	1.7	12
61	The effects of a pesticide program on non-target epiphytic microbial populations of apple leaves. Canadian Journal of Microbiology, 1978, 24, 1058-1072.	1.7	73