Charles M Kenerley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4572647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 2011, 9, 749-759.	28.6	814
2	Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 2011, 12, R40.	8.8	594
3	<i>Trichoderma</i> Research in the Genome Era. Annual Review of Phytopathology, 2013, 51, 105-129.	7.8	370
4	Sm1, a Proteinaceous Elicitor Secreted by the Biocontrol Fungus Trichoderma virens Induces Plant Defense Responses and Systemic Resistance. Molecular Plant-Microbe Interactions, 2006, 19, 838-853.	2.6	310
5	Secondary metabolism in Trichoderma – a genomic perspective. Microbiology (United Kingdom), 2012, 158, 35-45.	1.8	288
6	A Proteinaceous Elicitor Sm1 from the Beneficial Fungus <i>Trichoderma virens</i> Is Required for Induced Systemic Resistance in Maize. Plant Physiology, 2007, 145, 875-889.	4.8	286
7	Silencing <i>GhNDR1</i> and <i>GhMKK2</i> compromises cotton resistance to Verticillium wilt. Plant Journal, 2011, 66, 293-305.	5.7	222
8	The 18mer peptaibols from <i>Trichoderma virens</i> elicit plant defence responses. Molecular Plant Pathology, 2007, 8, 737-746.	4.2	218
9	Plant-Derived Sucrose Is a Key Element in the Symbiotic Association between <i>Trichoderma virens</i> and Maize Plants Â. Plant Physiology, 2009, 151, 792-808.	4.8	203
10	Identification of Peptaibols from Trichoderma virens and Cloning of a Peptaibol Synthetase. Journal of Biological Chemistry, 2002, 277, 20862-20868.	3.4	202
11	Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnology Journal, 2003, 1, 321-336.	8.3	142
12	Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology (United Kingdom), 2012, 158, 155-165.	1.8	137
13	Regulation of Morphogenesis and Biocontrol Properties in <i>Trichoderma virens</i> by a VELVET Protein, Vel1. Applied and Environmental Microbiology, 2010, 76, 2345-2352.	3.1	135
14	Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15965-15970.	7.1	128
15	Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genetics and Biology, 2004, 41, 336-348.	2.1	125
16	Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Current Genetics, 2002, 40, 374-384.	1.7	119
17	Dimerization Controls the Activity of Fungal Elicitors That Trigger Systemic Resistance in Plants. Journal of Biological Chemistry, 2008, 283, 19804-19815.	3.4	102
18	Two Classes of New Peptaibols Are Synthesized by a Single Non-ribosomal Peptide Synthetase of Trichoderma virens. Journal of Biological Chemistry, 2011, 286, 4544-4554.	3.4	97

CHARLES M KENERLEY

#	Article	IF	CITATIONS
19	Secretome of Trichoderma Interacting With Maize Roots: Role in Induced Systemic Resistance*. Molecular and Cellular Proteomics, 2015, 14, 1054-1063.	3.8	95
20	Oxylipins Other Than Jasmonic Acid Are Xylem-Resident Signals Regulating Systemic Resistance Induced by <i>Trichoderma virens</i> in Maize. Plant Cell, 2020, 32, 166-185.	6.6	91
21	Tvbgn3, a β-1,6-Clucanase from the Biocontrol Fungus Trichoderma virens, Is Involved in Mycoparasitism and Control of Pythium ultimum. Applied and Environmental Microbiology, 2006, 72, 7661-7670.	3.1	87
22	Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology (United Kingdom), 2014, 160, 2319-2330.	1.8	86
23	Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. Planta, 2009, 230, 277-291.	3.2	83
24	A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genetics and Biology, 2013, 56, 67-77.	2.1	81
25	Thearg2Gene ofTrichoderma virens:Cloning and Development of a Homologous Transformation System. Fungal Genetics and Biology, 1998, 23, 34-44.	2.1	76
26	Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots. BMC Genomics, 2015, 16, 8.	2.8	76
27	Functional characterization of a plantâ€like sucrose transporter from the beneficial fungus <i>Trichoderma virens</i> . Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. New Phytologist, 2011, 189, 777-789.	7.3	74
28	The effects of a pesticide program on non-target epiphytic microbial populations of apple leaves. Canadian Journal of Microbiology, 1978, 24, 1058-1072.	1.7	73
29	Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing ?-1,3- and ?-1,6-glucanase genes. Molecular Plant Pathology, 2007, 8, 469-480.	4.2	68
30	Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochemical and Biophysical Research Communications, 2018, 505, 606-611.	2.1	51
31	Positional variation in phylloplane microbial populations within an apple tree canopy. Microbial Ecology, 1980, 6, 71-84.	2.8	49
32	A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens. Fungal Biology, 2015, 119, 476-486.	2.5	41
33	Expression and purification of biologically active Trichoderma virens proteinaceous elicitor Sm1 in Pichia pastoris. Protein Expression and Purification, 2010, 72, 131-138.	1.3	40
34	Differential expression analysis of Trichoderma virens RNA reveals a dynamic transcriptome during colonization of Zea mays roots. BMC Genomics, 2019, 20, 280.	2.8	33
35	Expression of organophosphate hydrolase in the filamentous fungus Gliocladium virens. Applied Microbiology and Biotechnology, 1994, 41, 352-358.	3.6	32
36	Detection and enumeration of a genetically modified fungus in soil environments by quantitative competitive polymerase chain reaction. FEMS Microbiology Ecology, 1998, 25, 419-428.	2.7	27

CHARLES M KENERLEY

#	Article	IF	CITATIONS
37	Microbial populations associated with buds and young leaves of apple. Canadian Journal of Botany, 1980, 58, 847-855.	1.1	25
38	Enhanced expression of a bacterial gene for pesticide degradation in a common soil fungus. Journal of Bioscience and Bioengineering, 1996, 81, 473-481.	0.9	25
39	Transformation of the mycoparasite Gliocladium. Current Genetics, 1989, 15, 415-420.	1.7	23
40	Fitness, persistence, and responsiveness of a genetically engineered strain of Trichoderma virens in soil mesocosms. Applied Soil Ecology, 2005, 29, 125-134.	4.3	23
41	Inoculum dynamics ofGliocladium virens associated with roots of cotton seedlings. Microbial Ecology, 1992, 23, 169-179.	2.8	22
42	Trichoderma virens colonization of maize roots triggers rapid accumulation of 12-oxophytodienoate and two áµ§-ketols in leaves as priming agents of induced systemic resistance. Plant Signaling and Behavior, 2020, 15, 1792187.	2.4	15
43	Formulating variable carrying capacity by exploring a resource dynamics-based feedback mechanism underlying the population growth models. Ecological Complexity, 2009, 6, 403-412.	2.9	14
44	Production of gliotoxin by Cliocladium virens as a function of source and concentration of carbon and nitrogen. Mycological Research, 1991, 95, 1242-1248.	2.5	13
45	The effects of a pesticide program on microbial populations from apple leaf litter. Canadian Journal of Microbiology, 1979, 25, 1331-1344.	1.7	12
46	Cotton Fleahopper and Associated Microorganisms as Components in the Production of Stress Ethylene by Cotton. Plant Physiology, 1988, 87, 280-285.	4.8	12
47	Density independent population dynamics byTrichoderma virensin soil and defined substrates. Biocontrol Science and Technology, 2005, 15, 847-857.	1.3	11
48	A logistic model of subsurface fungal growth with application to bioremediation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2000, 35, 465-488.	1.7	9
49	Microbial Degradation of Fluometuron Is Influenced by Roundup WeatherMAX. Journal of Agricultural and Food Chemistry, 2008, 56, 8588-8593.	5.2	8
50	Deletion of the Trichoderma virens NRPS, Tex7, induces accumulation of the anti-cancer compound heptelidic acid. Biochemical and Biophysical Research Communications, 2020, 529, 672-677.	2.1	7
51	Characterization of <i>Sclerotinia minor</i> populations in Texas peanut fields. Plant Pathology, 2018, 67, 839-847.	2.4	6
52	Effects on hyphal morphology and development by the putative copper radical oxidase glx1 in Trichoderma virens suggest a novel role as a cell wall associated enzyme. Fungal Genetics and Biology, 2019, 131, 103245.	2.1	6
53	Analysis of a putative glycosylation site in the Trichoderma virens elicitor SM1 reveals no role in protein dimerization. Biochemical and Biophysical Research Communications, 2019, 509, 817-821.	2.1	6
54	Adhesion as a Focus in Trichoderma–Root Interactions. Journal of Fungi (Basel, Switzerland), 2022, 8, 372.	3.5	6

CHARLES M KENERLEY

#	Article	IF	CITATIONS
55	Competitiveness of a Genetically Engineered Strain of Trichoderma virens. Mycopathologia, 2008, 166, 51-59.	3.1	4
56	Early Transcriptome Response of Trichoderma virens to Colonization of Maize Roots. Frontiers in Fungal Biology, 2021, 2, .	2.0	3
57	Detection and enumeration of a genetically modified fungus in soil environments by quantitative competitive polymerase chain reaction. FEMS Microbiology Ecology, 1998, 25, 419-428.	2.7	3
58	Expression of organophosphate hydrolase in the filamentous fungus Gliocladium virens. Applied Microbiology and Biotechnology, 1994, 41, 352-358.	3.6	2
59	Measurement of Apple Root Losses Associated with Cold Storage and Elutriation of Soil Core Samples. HortTechnology, 2000, 10, 580-584.	0.9	2
60	Utilizing Aboveground Rhizotrons to Study Root Growth and Pathogen Movement in Simulated Orchard Conditions. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 798B-798.	1.0	0
61	Seasonal Influence on Infection Rates of Malus sylvestris var. domestica Roots by Phymatotrichopsis omnivora. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 747A-747.	1.0	0