Ryan T Gill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4571584/publications.pdf

Version: 2024-02-01

	172457	197818
2,819	29	49
citations	h-index	g-index
74	74	3310
docs citations	times ranked	citing authors
	citations 74	2,819 29 citations h-index 74 74

#	Article	IF	CITATIONS
1	Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nature Biotechnology, 2017, 35, 48-55.	17.5	298
2	Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnology for Biofuels, 2009, 2, 26.	6.2	283
3	Rapid and Efficient One-Step Metabolic Pathway Integration in <i>E.Âcoli</i> . ACS Synthetic Biology, 2016, 5, 561-568.	3.8	143
4	Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metabolic Engineering, 2011, 13, 28-37.	7.0	134
5	Renewable acrylonitrile production. Science, 2017, 358, 1307-1310.	12.6	122
6	Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination. ACS Synthetic Biology, 2015, 4, 1176-1185.	3.8	89
7	Strategy for directing combinatorial genome engineering in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10540-10545.	7.1	87
8	CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coli. Metabolic Engineering, 2017, 41, 1-10.	7.0	82
9	Genes restoring redox balance in fermentation-deficient E. coli NZN111. Metabolic Engineering, 2009, 11, 347-354.	7.0	79
10	Elucidating acetate tolerance in E. coli using a genome-wide approach. Metabolic Engineering, 2011, 13, 214-224.	7.0	60
11	Directed evolution and synthetic biology applications to microbial systems. Current Opinion in Biotechnology, 2016, 39, 126-133.	6.6	56
12	Amino acid content of recombinant proteins influences the metabolic burden response. Biotechnology and Bioengineering, 2005, 90, 116-126.	3.3	54
13	Engineered Ureolytic Microorganisms Can Tailor the Morphology and Nanomechanical Properties of Microbial-Precipitated Calcium Carbonate. Scientific Reports, 2019, 9, 14721.	3.3	51
14	Multiplexed tracking of combinatorial genomic mutations in engineered cell populations. Nature Biotechnology, 2015, 33, 631-637.	17.5	49
15	Genome scale engineering techniques for metabolic engineering. Metabolic Engineering, 2015, 32, 143-154.	7.0	48
16	A new recombineering system for precise genome-editing in Shewanella oneidensis strain MR-1 using single-stranded oligonucleotides. Scientific Reports, 2019, 9, 39.	3.3	48
17	Broad host range vectors for stable genomic library construction. Biotechnology and Bioengineering, 2006, 94, 151-158.	3.3	46
18	Genomics enabled approaches in strain engineering. Current Opinion in Microbiology, 2009, 12, 223-230.	5.1	45

#	Article	IF	CITATIONS
19	Codon Compression Algorithms for Saturation Mutagenesis. ACS Synthetic Biology, 2015, 4, 604-614.	3.8	45
20	The LASER database: Formalizing design rules for metabolic engineering. Metabolic Engineering Communications, 2015, 2, 30-38.	3.6	43
21	Synthetic biology: New strategies for directing design. Metabolic Engineering, 2012, 14, 205-211.	7.0	34
22	Iterative genome editing of Escherichia coli for 3-hydroxypropionic acid production. Metabolic Engineering, 2018, 47, 303-313.	7.0	34
23	Deep scanning lysine metabolism in <i>Escherichia coli</i> . Molecular Systems Biology, 2018, 14, e8371.	7.2	34
24	Genome engineering of E.Âcoli for improved styrene production. Metabolic Engineering, 2020, 57, 74-84.	7.0	34
25	Identification and characterization of a bacterial cytochrome P450 for the metabolism of diclofenac. Applied Microbiology and Biotechnology, 2010, 85, 625-633.	3.6	32
26	Directed combinatorial mutagenesis of Escherichia coli for complex phenotype engineering. Metabolic Engineering, 2018, 47, 10-20.	7.0	32
27	Directed Evolution of CRISPR/Cas Systems for Precise Gene Editing. Trends in Biotechnology, 2021, 39, 262-273.	9.3	32
28	Broadâ€hostâ€range vectors for protein expression across gram negative hosts. Biotechnology and Bioengineering, 2010, 106, 326-332.	3.3	30
29	Genome-Wide Mapping of Furfural Tolerance Genes in Escherichia coli. PLoS ONE, 2014, 9, e87540.	2.5	30
30	Comparison of genomeâ€wide selection strategies to identify furfural tolerance genes in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2015, 112, 129-140.	3.3	30
31	CRISPRâ€Enabled Tools for Engineering Microbial Genomes and Phenotypes. Biotechnology Journal, 2018, 13, e1700586.	3.5	30
32	Multiplex navigation of global regulatory networks (MINR) in yeast for improved ethanol tolerance and production. Metabolic Engineering, 2019, 51, 50-58.	7.0	30
33	Engineering genomes in multiplex. Current Opinion in Biotechnology, 2011, 22, 576-583.	6.6	28
34	<scp>CRISPR</scp> /Cas9 recombineeringâ€mediated deep mutational scanning of essential genes in <i>Escherichia coli</i> . Molecular Systems Biology, 2020, 16, e9265.	7.2	28
35	Enabling inverse metabolic engineering through genomics. Current Opinion in Biotechnology, 2003, 14, 484-490.	6.6	27
36	Overcoming substrate limitations for improved production of ethylene in E. coli. Biotechnology for Biofuels, 2016, 9, 3.	6.2	27

#	Article	IF	CITATIONS
37	Recombineering to homogeneity: extension of multiplex recombineering to largeâ€scale genome editing. Biotechnology Journal, 2013, 8, 515-522.	3.5	24
38	Towards a metabolic engineering strain "commons†An <i>Escherichia coli</i> platform strain for ethanol production. Biotechnology and Bioengineering, 2013, 110, 1520-1526.	3.3	24
39	Combinatorial pathway engineering using type lâ€E CRISPR interference. Biotechnology and Bioengineering, 2018, 115, 1878-1883.	3.3	23
40	Building a genome engineering toolbox in nonmodel prokaryotic microbes. Biotechnology and Bioengineering, 2018, 115, 2120-2138.	3.3	23
41	Genome-scale analysis of anti-metabolite directed strain engineering. Metabolic Engineering, 2008, 10, 109-120.	7.0	22
42	Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits. ACS Synthetic Biology, 2015, 4, 1244-1253.	3.8	22
43	Rational Control of Calcium Carbonate Precipitation by Engineered <i>Escherichia coli</i> Synthetic Biology, 2018, 7, 2497-2506.	3.8	22
44	Engineering regulatory networks for complex phenotypes in E. coli. Nature Communications, 2020, 11, 4050.	12.8	21
45	Tools for genome-wide strain design and construction. Current Opinion in Biotechnology, 2012, 23, 666-671.	6.6	17
46	The Resistome: A Comprehensive Database of Escherichia coli Resistance Phenotypes. ACS Synthetic Biology, 2016, 5, 1566-1577.	3.8	17
47	Refactoring the Genetic Code for Increased Evolvability. MBio, 2017, 8, .	4.1	17
48	A versatile platform strain for high-fidelity multiplex genome editing. Nucleic Acids Research, 2019, 47, 3244-3256.	14.5	16
49	Genome-Scale Identification Method Applied to Find Cryptic Aminoglycoside Resistance Genes in Pseudomonas aeruginosa. PLoS ONE, 2009, 4, e6576.	2.5	15
50	Genome-Wide Identification of Genes Conferring Energy Related Resistance to a Synthetic Antimicrobial Peptide (Bac8c). PLoS ONE, 2013, 8, e55052.	2.5	15
51	Parallel Mapping of Antibiotic Resistance Alleles in Escherichia coli. PLoS ONE, 2016, 11, e0146916.	2.5	15
52	Determinants for Efficient Editing with Cas9-Mediated Recombineering in <i>Escherichia coli</i> Synthetic Biology, 2020, 9, 1083-1099.	3.8	15
53	A comparative study of metabolic engineering anti-metabolite tolerance in Escherichia coli. Metabolic Engineering, 2006, 8, 227-239.	7.0	12
54	ROS mediated selection for increased NADPH availability in Escherichia coli. Biotechnology and Bioengineering, 2017, 114, 2685-2689.	3.3	12

#	Article	IF	CITATIONS
55	Mapping phenotypic landscapes using DNA micro-arrays. Metabolic Engineering, 2004, 6, 177-185.	7.0	11
56	The Tolerome: A Database of Transcriptome-Level Contributions to Diverse <i>Escherichia coli</i> Resistance and Tolerance Phenotypes. ACS Synthetic Biology, 2017, 6, 2302-2315.	3.8	11
57	Genomic Deoxyxylulose Phosphate Reductoisomerase (DXR) Mutations Conferring Resistance to the Antimalarial Drug Fosmidomycin in <i>E.Âcoli</i> . ACS Synthetic Biology, 2018, 7, 2824-2832.	3.8	11
58	Quantifying Impact of Chromosome Copy Number on Recombination in <i>Escherichia coli</i> Synthetic Biology, 2015, 4, 776-780.	3.8	10
59	Complex systems in metabolic engineering. Current Opinion in Biotechnology, 2015, 36, 107-114.	6.6	10
60	Synthesis aided design: The biological designâ€buildâ€test engineering paradigm?. Biotechnology and Bioengineering, 2016, 113, 7-10.	3.3	9
61	CONSTRICTOR: Constraint Modification Provides Insight into Design of Biochemical Networks. PLoS ONE, 2014, 9, e113820.	2.5	9
62	Integrating CRISPR-Enabled Trackable Genome Engineering and Transcriptomic Analysis of Global Regulators for Antibiotic Resistance Selection and Identification in Escherichia coli. MSystems, 2020, 5, .	3.8	8
63	A Web Interface for Codon Compression. ACS Synthetic Biology, 2016, 5, 1021-1023.	3.8	7
64	Quantifying complexity in metabolic engineering using the LASER database. Metabolic Engineering Communications, 2016, 3, 227-233.	3.6	7
65	Multiplex Evolution of Antibody Fragments Utilizing a Yeast Surface Display Platform. ACS Synthetic Biology, 2020, 9, 2197-2202.	3.8	7
66	Transcriptional Regulatory Networks Involved in C3–C4 Alcohol Stress Response and Tolerance in Yeast. ACS Synthetic Biology, 2021, 10, 19-28.	3.8	7
67	Strategies for the multiplex mapping of genes to traits. Microbial Cell Factories, 2013, 12, 99.	4.0	4
68	Implications of variable fluid resistance caused by start-up flow in microfluidic networks. Microfluidics and Nanofluidics, 2014, 16, 473-482.	2.2	4
69	The emergence of commodity-scale genetic manipulation. Current Opinion in Chemical Biology, 2015, 28, 150-155.	6.1	4
70	Multiplex growth rate phenotyping of synthetic mutants in selection to engineer glucose and xylose coâ€utilization in Escherichia coli. Biotechnology and Bioengineering, 2017, 114, 885-893.	3.3	4
71	Dynamic Management of Codon Compression for Saturation Mutagenesis. Methods in Molecular Biology, 2018, 1772, 171-189.	0.9	3