

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4571219/publications.pdf Version: 2024-02-01

RINLI

#	Article	IF	CITATIONS
1	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	27.8	1,255
2	A Draft Sequence for the Genome of the Domesticated Silkworm (<i>Bombyx mori</i>). Science, 2004, 306, 1937-1940.	12.6	994
3	Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle <i>Tribolium castaneum</i> . Genome Research, 2008, 18, 113-122.	5.5	359
4	A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Frontiers in Neuroendocrinology, 2008, 29, 142-165.	5.2	221
5	Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mechanisms of Development, 2008, 125, 984-995.	1.7	168
6	Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects. Genomics, 2012, 100, 327-335.	2.9	136
7	Functions of ion transport peptide and ion transport peptide-like in the red flour beetle Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2009, 39, 717-725.	2.7	92
8	Genes Encoding Small Heat Shock Proteins of the Silkworm, <i>Bombyx mori</i> . Bioscience, Biotechnology and Biochemistry, 2006, 70, 2443-2450.	1.3	62
9	Identification and evolution of two insulin receptor genes involved in Tribolium castaneum development and reproduction. Gene, 2016, 585, 196-204.	2.2	60
10	Comparative genomic analysis and evolution of family-B G protein-coupled receptors from six model insect species. Gene, 2013, 519, 1-12.	2.2	53
11	Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. Pesticide Biochemistry and Physiology, 2019, 159, 107-117.	3.6	50
12	Insecticidal Activity of Artemisia vulgaris Essential Oil and Transcriptome Analysis of Tribolium castaneum in Response to Oil Exposure. Frontiers in Genetics, 2020, 11, 589.	2.3	50
13	Identification of G protein-coupled receptors in the pea aphid, Acyrthosiphon pisum. Genomics, 2013, 102, 345-354.	2.9	45
14	<i><scp>M</scp>ethuselahâ€like</i> genes affect development, stress resistance, lifespan and reproduction in <i><scp>T</scp>ribolium castaneum</i> . Insect Molecular Biology, 2014, 23, 587-597.	2.0	43
15	Functions of duplicated genes encoding CCAP receptors in the red flour beetle, Tribolium castaneum. Journal of Insect Physiology, 2011, 57, 1190-1197.	2.0	40
16	MicroRNA-dependent regulation of metamorphosis and identification of microRNAs in the red flour beetle, Tribolium castaneum. Genomics, 2017, 109, 362-373.	2.9	37
17	Genome-wide DNA methylomes from discrete developmental stages reveal the predominance of non-CpG methylation in Tribolium castaneum. DNA Research, 2017, 24, 445-457.	3.4	36
18	<i>CYP4BN6</i> and <i>CYP6BQ11</i> mediate insecticide susceptibility and their expression is regulated by <i>Latrophilin</i> in <i>Tribolium castaneum</i> . Pest Management Science, 2019, 75, 2744-2755.	3.4	32

Βιν Li

#	Article	IF	CITATIONS
19	A Câ€type lectin with a single carbohydrateâ€recognition domain involved in the innate immune response of <i>Tribolium castaneum</i> . Insect Molecular Biology, 2019, 28, 649-661.	2.0	30
20	Characterization and functional analysis of <i>hsp18.3</i> gene in the red flour beetle, <i>Tribolium castaneum</i> . Insect Science, 2019, 26, 263-273.	3.0	30
21	Functional diversification of three deltaâ€class glutathione Sâ€transferases involved in development and detoxification in <scp> <i>Tribolium castaneum </i> </scp> . Insect Molecular Biology, 2020, 29, 320-336.	2.0	27
22	Comparative RNA-sequencing profiling reveals novel Delta-class glutathione S-transferases relative genes expression patterns in Tribolium castaneum. Gene, 2016, 593, 13-20.	2.2	24
23	A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum. PLoS Genetics, 2020, 16, e1008772.	3.5	24
24	Identification and characterization of novel ER-based hsp90 gene in the red flour beetle, Tribolium castaneum. Cell Stress and Chaperones, 2014, 19, 623-633.	2.9	22
25	A Câ€ŧype lectin with <scp>dual RD</scp> from <i>Tribolium castaneum</i> is induced in response to bacterial challenge. Pest Management Science, 2020, 76, 3965-3974.	3.4	22
26	Odorant-Binding Proteins Contribute to the Defense of the Red Flour Beetle, Tribolium castaneum, Against Essential Oil of Artemisia vulgaris. Frontiers in Physiology, 2020, 11, 819.	2.8	20
27	A heat shock protein protects against oxidative stress induced by lambda-cyhalothrin in the green peach aphid Myzus persicae. Pesticide Biochemistry and Physiology, 2022, 181, 104995.	3.6	20
28	Multiple functions of miRâ€8â€3p in the development and metamorphosis of the red flour beetle, <i>Tribolium castaneum</i> . Insect Molecular Biology, 2019, 28, 208-221.	2.0	19
29	Characterization of a sigma class GST (GSTS6) required for cellular detoxification and embryogenesis in <i>Tribolium castaneum</i> . Insect Science, 2022, 29, 215-229.	3.0	19
30	Comparative RNA-sequencing analysis of mthl1 functions and signal transductions in Tribolium castaneum. Gene, 2014, 547, 310-318.	2.2	17
31	Transcriptome profiling analysis reveals the role of latrophilin in controlling development, reproduction and insecticide susceptibility in Tribolium castaneum. Genetica, 2018, 146, 287-302.	1.1	17
32	Latrophilin mediates insecticides susceptibility and fecundity through two carboxylesterases, esterase4 and esterase6, in Tribolium castaneum. Bulletin of Entomological Research, 2019, 109, 534-543.	1.0	17
33	Genomeâ€wide identification and characterization of long nonâ€coding RNAs in <i>Tribolium castaneum</i> . Insect Science, 2021, 28, 1262-1276.	3.0	16
34	Identification and evolution of <i>latrophilin</i> receptor gene involved in <i>Tribolium castaneum</i> devolopment and female fecundity. Genesis, 2017, 55, e23081.	1.6	15
35	Functional analysis of the circadian clock gene <i>timeless</i> in <i>Tribolium castaneum</i> . Insect Science, 2018, 25, 418-428.	3.0	15
36	Three cytochrome <scp>P450 CYP4</scp> family genes regulated by the <scp>CncC</scp> signaling pathway mediate phytochemical susceptibility in the red flour beetle, <i>Tribolium castaneum</i> . Pest Management Science, 2022, 78, 3508-3518.	3.4	15

Βιν Li

#	Article	IF	CITATIONS
37	Functions of a Câ€ŧype lectin with a single carbohydrateâ€recognition domain in the innate immunity and movement of the red flour beetle, <scp><i>Tribolium castaneum</i></scp> . Insect Molecular Biology, 2021, 30, 90-101.	2.0	13
38	Identification and functional characterization of methyl-CpG binding domain protein from Tribolium castaneum. Genomics, 2020, 112, 2223-2232.	2.9	12
39	Response of xenobiotic biodegradation and metabolic genes in Tribolium castaneum following eugenol exposure. Molecular Genetics and Genomics, 2022, 297, 801-815.	2.1	11
40	Comparative RNA-sequencing analysis of ER-based HSP90 functions and signal pathways in Tribolium castaneum. Cell Stress and Chaperones, 2018, 23, 29-43.	2.9	10
41	CharacterizationÂandÂfunctionalÂanalysisÂofÂ <i>hsp21.8b</i> : An orthologous smallÂheatÂshock protein geneÂinÂ <i>TriboliumÂcastaneum</i> . Journal of Applied Entomology, 2018, 142, 654-666.	1.8	10
42	Functional analysis of a novel orthologous small heat shock protein (shsp) hsp21.8a and seven species-specific shsps in Tribolium castaneum. Genomics, 2020, 112, 4474-4485.	2.9	10
43	Identification and Expression Analysis of G Protein-Coupled Receptors in the Miridae Insect Apolygus lucorum. Frontiers in Endocrinology, 2021, 12, 773669.	3.5	10
44	Dusky-like is required for epidermal pigmentation and metamorphosis in Tribolium castaneum. Scientific Reports, 2016, 6, 20102.	3.3	8
45	RRâ€1 cuticular protein <i>TcCPR69</i> is required for growth and metamorphosis in <i>Tribolium castaneum</i> . Insect Science, 2022, 29, 1612-1628.	3.0	8
46	Identification and comparative analysis of G protein-coupled receptors in Pediculus humanus humanus. Genomics, 2014, 104, 58-67.	2.9	7
47	Identification, expression and function of myosin heavy chain family genes in Tribolium castaneum. Genomics, 2019, 111, 719-728.	2.9	7
48	Dusky works upstream of Fourâ€jointed and Forked in wing morphogenesis in <i>Tribolium castaneum</i> . Insect Molecular Biology, 2017, 26, 677-686.	2.0	6
49	Identification and characterization of G protein-coupled receptors in Spodoptera frugiperda (Insecta:) Tj ETQq1	0,784314 1.8	l rgBT /Overl
50	Transcriptome analysis of hsp18.3 functions and regulatory systems using RNA-sequencing in the red flour beetle, Tribolium castaneum. Journal of Integrative Agriculture, 2018, 17, 1040-1056.	3.5	5
51	Functional analysis of TcCTL12 in innate immunity and development in Tribolium castaneum. International Journal of Biological Macromolecules, 2022, 206, 422-434.	7.5	5
52	Functional characterization of a special dicistronic transcription unit encoding histone methyltransferase <i>su(var)3-9</i> and translation regulator <i>elF2γ</i> in <i>Tribolium castaneum</i> . Biochemical Journal, 2020, 477, 3059-3074.	3.7	4
53	Multiple Interval Mapping for Whole Cocoon Weight and Related Economically Important Traits QTL in Silkworm (Bombyx mori). Agricultural Sciences in China, 2006, 5, 798-804.	0.6	3
54	<i>Tcmof</i> REGULATES LARVAL/PUPAL DEVELOPMENT AND FEMALE FECUNDITY IN RED FLOUR BEETLE, <i>Tribolium castaneum</i> . Archives of Insect Biochemistry and Physiology, 2015, 88, 111-122.	1.5	3

Bin Li

#	Article	IF	CITATIONS
55	Crinkled employs wingless pathway for wing development in <i>Tribolium castaneum</i> . Archives of Insect Biochemistry and Physiology, 2018, 99, e21496.	1.5	3
56	Functional analysis of zona pellucida domain protein Dusky in <i>Tribolium castaneum</i> . Insect Science, 2022, 29, 388-398.	3.0	3
57	MiR â€3017b contributes to metamorphosis by targeting sarco/endoplasmic reticulum Ca 2+ ATPase in Tribolium castaneum. Insect Molecular Biology, 2022, , .	2.0	3
58	A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum. , 2020, 16, e1008772.		0
59	A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum. , 2020, 16, e1008772.		0
60	A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum. , 2020, 16, e1008772.		0
61	A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum. , 2020, 16, e1008772.		0
62	A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum. , 2020, 16, e1008772.		0
63	A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum. , 2020, 16, e1008772.		0