
Lilia M Iakoucheva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4570324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. Nature Genetics, 2022, 54, 1284-1292.	9.4	66
2	Autism-linked Cullin3 germline haploinsufficiency impacts cytoskeletal dynamics and cortical neurogenesis through RhoA signaling. Molecular Psychiatry, 2021, 26, 3586-3613.	4.1	26
3	Full-length isoform transcriptome of the developing human brain provides further insights into autism. Cell Reports, 2021, 36, 109631.	2.9	23
4	Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Molecular Psychiatry, 2021, 26, 7560-7580.	4.1	61
5	Prioritizing de novo autism risk variants with calibrated gene- and variant-scoring models. Human Genetics, 2021, , 1.	1.8	1
6	Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications, 2020, 11, 5918.	5.8	305
7	Getting to the Cores of Autism. Cell, 2019, 178, 1287-1298.	13.5	204
8	Oligogenic Effects of 16p11.2 Copy-Number Variation on Craniofacial Development. Cell Reports, 2019, 28, 3320-3328.e4.	2.9	34
9	Pathogenicity and functional impact of non-frameshifting insertion/deletion variation in the human genome. PLoS Computational Biology, 2019, 15, e1007112.	1.5	34
10	Paternally inherited cis-regulatory structural variants are associated with autism. Science, 2018, 360, 327-331.	6.0	174
11	Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 2018, 362, .	6.0	805
12	Comprehensive Analyses of Tissue-Specific Networks with Implications to Psychiatric Diseases. Methods in Molecular Biology, 2017, 1613, 371-402.	0.4	5
13	When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants. Bioinformatics, 2017, 33, i389-i398.	1.8	53
14	Frequency and Complexity of De Novo Structural Mutation in Autism. American Journal of Human Genetics, 2016, 98, 667-679.	2.6	88
15	Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing. Cell, 2016, 164, 805-817.	13.5	479
16	Spatiotemporal 16p11.2 Protein Network Implicates Cortical Late Mid-Fetal Brain Development and KCTD13-Cul3-RhoA Pathway in Psychiatric Diseases. Neuron, 2015, 85, 742-754.	3.8	139
17	Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism. Nature Communications, 2014, 5, 3650.	5.8	131
18	Predicted disorder-to-order transition mutations in lκBα disrupt function. Physical Chemistry Chemical Physics, 2014, 16, 6480.	1.3	21

Lilia M Iakoucheva

#	Article	IF	CITATIONS
19	Pathological Unfoldomics of Uncontrolled Chaos: Intrinsically Disordered Proteins and Human Diseases. Chemical Reviews, 2014, 114, 6844-6879.	23.0	231
20	A Proteome-Scale Map of the Human Interactome Network. Cell, 2014, 159, 1212-1226.	13.5	1,199
21	Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic Protein Disorder. PLoS Computational Biology, 2012, 8, e1002709.	1.5	123
22	Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation. Cell, 2012, 151, 1431-1442.	13.5	501
23	A Protein Domain-Based Interactome Network for C.Âelegans Early Embryogenesis. Cell, 2012, 151, 1633.	13.5	4
24	Disease mutations in disordered regions—exception to the rule?. Molecular BioSystems, 2012, 8, 27-32.	2.9	93
25	Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature, 2011, 471, 499-503.	13.7	296
26	Mapping copy number variation by population-scale genome sequencing. Nature, 2011, 470, 59-65.	13.7	991
27	Identification, analysis, and prediction of protein ubiquitination sites. Proteins: Structure, Function and Bioinformatics, 2010, 78, 365-380.	1.5	513
28	Graphlet Kernels for Prediction of Functional Residues in Protein Structures. Journal of Computational Biology, 2010, 17, 55-72.	0.8	44
29	LOSS OF POST-TRANSLATIONAL MODIFICATION SITES IN DISEASE. , 2009, , 337-347.		56
30	Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics, 2009, 10, S7.	1.2	236
31	Microduplications of 16p11.2 are associated with schizophrenia. Nature Genetics, 2009, 41, 1223-1227.	9.4	646
32	Prioritizing Disease Genes and Understanding Disease Pathways. , 2009, , 239-256.		0
33	RNA association or phosphorylation of the RS domain prevents aggregation of RS domain-containing proteins. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 214-225.	1.1	34
34	A Protein Domain-Based Interactome Network for C. elegans Early Embryogenesis. Cell, 2008, 134, 534-545.	13.5	196
35	Functional Anthology of Intrinsic Disorder. 1. Biological Processes and Functions of Proteins with Long Disordered Regions. Journal of Proteome Research, 2007, 6, 1882-1898.	1.8	525
36	Functional Anthology of Intrinsic Disorder. 3. Ligands, Post-Translational Modifications, and Diseases Associated with Intrinsically Disordered Proteins. Journal of Proteome Research, 2007, 6, 1917-1932.	1.8	369

Lilia M Ιακούς μενά

#	Article	IF	CITATIONS
37	Functional Anthology of Intrinsic Disorder. 2. Cellular Components, Domains, Technical Terms, Developmental Processes, and Coding Sequence Diversities Correlated with Long Disordered Regions. Journal of Proteome Research, 2007, 6, 1899-1916.	1.8	244
38	Intrinsic Disorder and Functional Proteomics. Biophysical Journal, 2007, 92, 1439-1456.	0.2	643
39	Prediction of Intrinsic Disorder and Its Use in Functional Proteomics. Methods in Molecular Biology, 2007, 408, 69-92.	0.4	37
40	Serine/arginine-rich splicing factors belong to a class of intrinsically disordered proteins. Nucleic Acids Research, 2006, 34, 305-312.	6.5	102
41	Intrinsic Disorder Is a Common Feature of Hub Proteins from Four Eukaryotic Interactomes. PLoS Computational Biology, 2006, 2, e100.	1.5	512
42	Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments. Bioinformatics, 2006, 22, 1536-1537.	1.8	468
43	Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS Journal, 2005, 272, 5129-5148.	2.2	1,052
44	DisProt: a database of protein disorder. Bioinformatics, 2005, 21, 137-140.	1.8	231
45	Combining prediction, computation and experiment for the characterization of protein disorder. Current Opinion in Structural Biology, 2004, 14, 570-576.	2.6	125
46	The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Research, 2004, 32, 1037-1049.	6.5	1,230
47	Order, Disorder, and Flexibility. Structure, 2003, 11, 1316-1317.	1.6	55
48	Intrinsic Disorder and Protein Functionâ€. Biochemistry, 2002, 41, 6573-6582.	1.2	1,605
49	Equilibrium and Stop-Flow Kinetic Studies of Fluorescently Labeled DNA Substrates with DNA Repair Proteins XPA and Replication Protein A. Biochemistry, 2002, 41, 131-143.	1.2	26
50	Intrinsic Disorder in Cell-signaling and Cancer-associated Proteins. Journal of Molecular Biology, 2002, 323, 573-584.	2.0	1,077
51	Single-Molecule Conformational Dynamics of Fluctuating Noncovalent DNAâ ^{~,} Protein Interactions in DNA Damage Recognition. Journal of the American Chemical Society, 2001, 123, 9184-9185.	6.6	46
52	Identification of intrinsic order and disorder in the DNA repair protein XPA. Protein Science, 2001, 10, 560-571.	3.1	108
53	Aberrant mobility phenomena of the DNA repair protein XPA. Protein Science, 2001, 10, 1353-1362.	3.1	67
54	Nucleotide Excision Repair in Oocyte Nuclear Extracts from Xenopus laevis. Methods, 2000, 22, 188-193.	1.9	6

#	Article	IF	CITATIONS
55	Extended X-Ray Absorption Fine Structure Evidence for a Single Metal Binding Domain inXenopus laevisNucleotide Excision Repair Protein XPA. Biochemical and Biophysical Research Communications, 1999, 254, 109-113.	1.0	15
56	Oligogenic Effects of 16p11.2 Copy Number Variation on Craniofacial Development. SSRN Electronic Journal, 0, , .	0.4	1