Jiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4569816/publications.pdf

Version: 2024-02-01

		159585	233421
171	3,656	30	45
papers	citations	h-index	g-index
176	176	176	1609
170	170	170	1009
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics. Optical Materials, 2008, 31, 6-17.	3. 6	139
2	Co-precipitation synthesis route to yttrium aluminum garnet (YAG) transparent ceramics. Journal of the European Ceramic Society, 2012, 32, 2971-2979.	5.7	110
3	The history, development, and future prospects for laser ceramics: A review. International Journal of Refractory Metals and Hard Materials, 2013, 39, 44-52.	3 . 8	99
4	Nanostructured Nd:YAG powders via gel combustion: The influence of citrate-to-nitrate ratio. Ceramics International, 2008, 34, 141-149.	4.8	75
5	Diodeâ€Pumped Yb:YAG Ceramic Laser. Journal of the American Ceramic Society, 2007, 90, 3334-3337.	3 . 8	74
6	Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser. Optical Materials Express, 2014, 4, 1042.	3.0	71
7	Composition and structure design of three-layered composite phosphors for high color rendering chip-on-board light-emitting diode devices. Journal of Advanced Ceramics, 2021, 10, 729-740.	17.4	64
8	Diodeâ€Pumped Tm:YAG Ceramic Laser. Journal of the American Ceramic Society, 2009, 92, 2434-2437.	3.8	62
9	Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics. Journal of the European Ceramic Society, 2014, 34, 2497-2507.	5.7	61
10	Synthesis of Nd:YAG powders leading to transparent ceramics: The effect of MgO dopant. Journal of the European Ceramic Society, 2011, 31, 653-657.	5.7	53
11	Solid-state reactive sintering of YAG transparent ceramics for optical applications. Journal of Alloys and Compounds, 2014, 616, 81-88.	5 . 5	52
12	Promising magneto-optical ceramics for high power Faraday isolators. Scripta Materialia, 2018, 155, 78-84.	5. 2	51
13	Research progress and prospects of rare-earth doped sesquioxide laser ceramics. Journal of the European Ceramic Society, 2021, 41, 3895-3910.	5 . 7	50
14	GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 Âμm. Optics Express, 2015, 23, 1361.	3.4	48
15	Transparent Ce:GdYAG ceramic color converters for high-brightness white LEDs and LDs. Optical Materials, 2019, 88, 97-102.	3. 6	48
16	Spark plasma sintering of Y2O3–MgO composite nanopowder synthesized by the esterification sol–gel route. Ceramics International, 2015, 41, 3312-3317.	4.8	47
17	Comparison of aqueous- and non-aqueous-based tape casting for preparing YAG transparent ceramics. Journal of Alloys and Compounds, 2013, 577, 228-231.	5. 5	44
18	Influence of pH values on (Nd+Y):Al molar ratio of Nd:YAG nanopowders and preparation of transparent ceramics. Journal of Alloys and Compounds, 2010, 503, 525-528.	5 . 5	42

#	Article	IF	Citations
19	Fabrication of highly transparent AlON ceramics by hot isostatic pressing post-treatment. Journal of the European Ceramic Society, 2017, 37, 4213-4216.	5.7	41
20	Laminarâ€Structured YAG/Nd:YAG/YAG Transparent Ceramics for Solidâ€State Lasers. International Journal of Applied Ceramic Technology, 2008, 5, 360-364.	2.1	40
21	Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics. Journal of Alloys and Compounds, 2012, 527, 66-70.	5.5	40
22	The Harmful Effects of Sintering Aids in <scp><scp>Pr</scp></scp> Control Ceramic Scintillator. Journal of the American Ceramic Society, 2012, 95, 2130-2132.	3.8	39
23	Preparation and properties of transparent Eu:YAG fluorescent ceramics with different doping concentrations. Ceramics International, 2014, 40, 8539-8545.	4.8	39
24	Effects of ball milling time on microstructure evolution and optical transparency of Nd:YAG ceramics. Ceramics International, 2014, 40, 9841-9851.	4.8	39
25	Preparation and optical properties of MgAl2O4-Ce:GdYAG composite ceramic phosphors for white LEDs. Journal of the European Ceramic Society, 2019, 39, 4965-4971.	5.7	36
26	Preparation and characterizations of Nd:YAG ceramic derived silica fibers drawn by post-feeding molten core approach. Optics Express, 2016, 24, 24248.	3.4	34
27	Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders. Journal of Advanced Ceramics, 2020, 9, 674-682.	17.4	34
28	Effect of air annealing on the optical properties and laser performance of Nd:YAG transparent ceramics. Optical Materials Express, 2014, 4, 2108.	3.0	33
29	Fabrication of YAG transparent ceramics using carbonate precipitated yttria powder. Journal of the European Ceramic Society, 2015, 35, 2379-2390.	5.7	31
30	Highly transparent Tb3Al5O12 magneto-optical ceramics sintered from co-precipitated powders with sintering aids. Optical Materials, 2018, 78, 370-374.	3.6	31
31	Fabrication and properties of highly transparent Yb:LuAG ceramics. Journal of Alloys and Compounds, 2016, 664, 595-601.	5.5	30
32	Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders: The influence of ammonium hydrogen carbonate to metal ions molar ratio. Ceramics International, 2017, 43, 14457-14463.	4.8	30
33	Fabrication, microstructure and optical characterizations of holmium oxide (Ho2O3) transparent ceramics. Journal of the European Ceramic Society, 2021, 41, 759-767.	5.7	30
34	Fabrication, microstructure and magneto-optical properties of Tb3Al5O12 transparent ceramics. Optical Materials, 2016, 62, 205-210.	3.6	29
35	Synthesis of yttria nano-powders by the precipitation method: The influence of ammonium hydrogen carbonate to metal ions molar ratio and ammonium sulfate addition. Journal of Alloys and Compounds, 2016, 678, 258-266.	5.5	29
36	Fabrication and performance evaluation of novel transparent ceramics RE:Tb3Ga5O12 (RE = Pr, Tm, Dy) toward magneto-optical application. Journal of Advanced Ceramics, 2021, 10, 271-278.	17.4	29

#	Article	IF	CITATIONS
37	Fabrication, microstructure, and properties of 8 mol% yttria-stabilized zirconia (8YSZ) transparent ceramics. Journal of Advanced Ceramics, 2022, 11, 1153-1162.	17.4	29
38	Effects of LiF on the microstructure and optical properties of hot-pressed MgAl2O4 ceramics. Ceramics International, 2017, 43, 6891-6897.	4.8	28
39	Fabrication and laser operation of Yb:Lu ₂ O ₃ transparent ceramics from coâ€precipitated nanoâ€powders. Journal of the American Ceramic Society, 2019, 102, 7491-7499.	3.8	28
40	Fabrication, microstructure and spectroscopic properties of Yb:Lu2O3 transparent ceramics from co-precipitated nanopowders. Ceramics International, 2018, 44, 11635-11643.	4.8	27
41	Al2O3–Ce:YAG and Al2O3–Ce:(Y,Gd)AG composite ceramics for high brightness lighting: Effect of microstructure. Materials Characterization, 2021, 172, 110883.	4.4	27
42	Influence of Ammonium Hydrogen Carbonate to Metal Ions Molar Ratio on Co-precipitated Nanopowders for TGG Transparent Ceramics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, 34, 791.	1.3	27
43	Novel (Tb0.99Ce0.01)3Ga5O12 magneto-optical ceramics for Faraday isolators. Scripta Materialia, 2020, 177, 137-140.	5.2	26
44	Fabrication and Scintillation Performance of Nonstoichiometric LuAG:Ce Ceramics. Journal of the American Ceramic Society, 2015, 98, 510-514.	3.8	25
45	A novel (Tb0.995Ho0.005)3Al5O12 magneto-optical ceramic with high transparency and Verdet constant. Scripta Materialia, 2018, 150, 160-163.	5.2	25
46	Transparent Y3Al5O12 ceramics produced by an aqueous tape casting method. Ceramics International, 2013, 39, 4639-4643.	4.8	24
47	Nd:YAG transparent ceramics fabricated by direct cold isostatic pressing and vacuum sintering. Optical Materials, 2015, 50, 25-31.	3.6	24
48	Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders. Optical Materials, 2017, 73, 38-44.	3.6	24
49	Multiâ€component yttrium aluminosilicate (<scp>YAS</scp>) fiber prepared by meltâ€inâ€tube method for stable singleâ€frequency laser. Journal of the American Ceramic Society, 2019, 102, 2551-2557. Role of Y Admixture in <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.8</td><td>24</td></mml:math>	3.8	24
50	display="inline"> <mml:mrow><mml:mo stretchy="false">(<mml:msub><mml:mrow><mml:mi>Lu</mml:mi></mml:mrow><mml:mrow><mml< td=""><td>:mn >1<td>ıml:mn><mml< td=""></mml<></td></td></mml<></mml:mrow></mml:msub></mml:mo </mml:mrow>	:mn >1 <td>ıml:mn><mml< td=""></mml<></td>	ıml:mn> <mml< td=""></mml<>
51	Physical Review Applied, 2016, 6, . Fabrication of 5Âat.%Yb:(La 0.1 Y 0.9) 2 O 3 transparent ceramics by chemical precipitation and vacuum sintering. Optical Materials, 2017, 71, 56-61.	3.6	23
52	Influence of cerium doping concentration on the optical properties of Ce,Mg:LuAG scintillation ceramics. Journal of the European Ceramic Society, 2018, 38, 3246-3254.	5.7	23
53	Fabrication and properties of (Tb1-xCex)3Al5O12 magneto-optical ceramics with different doping concentrations. Scripta Materialia, 2018, 155, 46-49.	5.2	23
54	Fabrication and characterizations of 8.7 mol% Y2O3-ZrO2 transparent ceramics using co-precipitated nanopowders. Scripta Materialia, 2019, 171, 98-101.	5.2	23

#	Article	IF	CITATIONS
55	Transparent Tb3Ga5O12 magneto-optical ceramics sintered from co-precipitated nano-powders calcined at different temperatures. Optical Materials, 2019, 90, 26-32.	3.6	23
56	Fabrication and upconversion luminescence of novel transparent Er2O3 ceramics. Journal of the European Ceramic Society, 2020, 40, 1767-1772.	5.7	23
57	Progress and perspectives on composite laser ceramics: A review. Journal of the European Ceramic Society, 2022, 42, 1833-1851.	5.7	23
58	Influence of doping concentration on microstructure evolution and sintering kinetics of Er:YAG transparent ceramics. Optical Materials, 2014, 37, 706-713.	3.6	22
59	Transparent Yb: (LuxSc1â^'x)2O3 ceramics sintered from carbonate co-precipitated powders. Ceramics International, 2015, 41, 6335-6339.	4.8	22
60	First laser emission of Yb_015:(Lu_05Y_05)_3Al_5O_12 ceramics. Optics Express, 2016, 24, 9611.	3.4	22
61	Effect of Li+ ions co-doping on luminescence, scintillation properties and defects characteristics of LuAG:Ce ceramics. Optical Materials, 2017, 64, 245-249.	3.6	22
62	Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach. Ceramics International, 2017, 43, 5837-5841.	4.8	22
63	Post-treatment of nanopowders-derived Nd:YAG transparent ceramics by hot isostatic pressing. Ceramics International, 2017, 43, 10013-10019.	4.8	22
64	Fabrication and spectroscopic properties of Co:MgAl 2 O 4 transparent ceramics by the HIP post-treatment. Optical Materials, 2017, 69, 152-157.	3.6	22
65	Effects of deformation rate on properties of Nd,Y-codoped CaF 2 transparent ceramics. Journal of the European Ceramic Society, 2018, 38, 2404-2409.	5.7	22
66	Fabrication and characterizations of (Tb1-xPrx)3Al5O12 magneto-optical ceramics for Faraday isolators. Optical Materials, 2018, 84, 330-334.	3.6	22
67	Electronic band modification for faster and brighter Ce,Mg:Lu3-xYxAl5O12 ceramic scintillators. Journal of Luminescence, 2019, 214, 116545.	3.1	22
68	Fabrication and laser oscillation of Yb:Sc2O3 transparent ceramics from co-precipitated nano-powders. Journal of the European Ceramic Society, 2018, 38, 1632-1638.	5.7	21
69	Fabrication and <scp>kW</scp> â€level <scp>MOPA</scp> laser output of planar waveguide <scp>YAG</scp> /Yb: <scp>YAG</scp> / <scp>YAG</scp> ceramic slab. Journal of the American Ceramic Society, 2019, 102, 1758-1767.	3.8	21
70	Microstructure and properties of MgAl2O4 transparent ceramics fabricated by hot isostatic pressing. Optical Materials, 2020, 104, 109938.	3.6	21
71	Fabrication of Nd:YAG transparent ceramics by non-aqueous gelcasting and vacuum sintering. Journal of the European Ceramic Society, 2016, 36, 2543-2548.	5.7	20
72	High efficiency laser action in mildly doped Yb:LuYAG ceramics. Optical Materials, 2017, 73, 312-318.	3 . 6	20

#	Article	IF	Citations
73	Transparent Nd-doped Ca1â^'xYxF2+x ceramics prepared by the ceramization of single crystals. Materials and Design, 2017, 113, 326-330.	7.0	20
74	Gd ₂ O ₂ S: Pr Scintillation Ceramics from Powder Synthesized by a Novel Carbothermal Reduction Method. Journal of the American Ceramic Society, 2015, 98, 2159-2164.	3.8	19
75	Hot-pressing and post-HIP treatment of Fe 2+ :ZnS transparent ceramics from co-precipitated powders. Journal of the European Ceramic Society, 2017, 37, 2253-2257.	5.7	19
76	Fabrication and properties of Eu:Lu2O3 transparent ceramics for X-ray radiation detectors. Optical Materials, 2018, 80, 22-29.	3.6	19
77	Fabrication, microstructure, and optical properties of Tm:Y ₃ ScAl ₄ O ₁₂ laser ceramics. Journal of the American Ceramic Society, 2020, 103, 1819-1830.	3.8	19
78	Fabrication and scintillation properties of highly transparent Pr:LuAG ceramics using Sc,La-based isovalent sintering aids. Ceramics International, 2013, 39, 5985-5990.	4.8	18
79	The influence of air annealing on the microstructure and scintillation properties of Ce,Mg:Lu <scp>AG</scp> ceramics. Journal of the American Ceramic Society, 2019, 102, 1805-1813.	3.8	18
80	Achievements and Future Perspectives of the Trivalent Thulium-Ion-Doped Mixed-Sesquioxide Ceramics for Laser Applications. Materials, 2022, 15, 2084.	2.9	18
81	Preparation and characterization of transparent Tm:YAG ceramics. Ceramics International, 2011, 37, 1133-1137.	4.8	17
82	Continuous-wave laser performance of non-aqueous tape casting fabricated Yb:YAG ceramics. Optical Materials Express, 2015, 5, 330.	3.0	17
83	Densification Behavior, Phase Transition, and Preferred Orientation of Hotâ€Pressed ZnS Ceramics from Precipitated Nanopowders. Journal of the American Ceramic Society, 2016, 99, 3060-3066.	3.8	17
84	Continuous-wave and passively Q-switched 1.06 \hat{l} 4m ceramic Nd:YAG laser. Optics and Laser Technology, 2016, 81, 46-49.	4.6	17
85	Thulium doped LuAG ceramics for passively mode locked lasers. Optics Express, 2017, 25, 7084.	3.4	17
86	A Comprehensive Characterization of a 10 at.% Yb:YSAG Laser Ceramic Sample. Materials, 2018, 11, 837.	2.9	17
87	The role of air annealing on the optical and scintillation properties of Mg co-doped Pr:LuAG transparent ceramics. Optical Materials, 2017, 72, 201-207.	3.6	16
88	Suppression of the slow scintillation component of Pr:Lu3Al5O12 transparent ceramics by increasing Pr concentration. Journal of Luminescence, 2019, 210, 14-20.	3.1	16
89	A simple way to prepare Co:MgAl2O4 transparent ceramics for saturable absorber. Journal of Alloys and Compounds, 2019, 797, 1288-1294.	5.5	16
90	Fabrication and characterizations of highly transparent Tb3Ga5O12 magneto-optical ceramics. Optical Materials, 2019, 88, 238-243.	3.6	16

#	Article	IF	CITATIONS
91	Fabrication, microstructure, and optical properties of Yb:Y ₃ ScAl ₄ O ₁₂ transparent ceramics with different doping levels. Journal of the American Ceramic Society, 2020, 103, 224-234.	3.8	16
92	Fabrication and properties of transparent Tb:YAG fluorescent ceramics with different doping concentrations. Ceramics International, 2016, 42, 13812-13818.	4.8	15
93	Fabrication and characterizations of (Lu,Gd)2O3:Eu scintillation ceramics. Ceramics International, 2017, 43, 2165-2169.	4.8	15
94	Fabrication of Yb:Sc2O3 transparent ceramics from co-precipitated nanopowders: The effect of ammonium hydrogen carbonate to metal ions molar ratio. Optical Materials, 2018, 75, 673-679.	3.6	15
95	Fabrication and properties of highly transparent Tm3Al5O12 (TmAG) ceramics. Ceramics International, 2009, 35, 2927-2931.	4.8	14
96	Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG. Scientific Reports, 2016, 6, 31289.	3.3	14
97	Fabrication, microstructure and laser performance of Nd 3+ -doped Lu 3 Al 5 O 12 transparent ceramics. Journal of the European Ceramic Society, 2016, 36, 655-661.	5.7	14
98	Tape casting fabrication and properties of planar waveguide YAG/Yb:YAG/YAG transparent ceramics. Optical Materials, 2017, 69, 169-174.	3.6	14
99	Synthesis of Tb4O7 nanopowders by the carbonate-precipitation method for Tb3Al5O12 magneto-optical ceramics. Optical Materials, 2017, 73, 706-711.	3.6	14
100	Influences of the Sc3+ content on the microstructure and optical properties of 10â€⁻at.% Yb:Y3ScxAl5-xO12 laser ceramics. Journal of Alloys and Compounds, 2020, 815, 152637.	5.5	14
101	Fabrication of Dy2O3 Transparent Ceramics by Vacuum Sintering Using Precipitated Powders. Magnetochemistry, 2021, 7, 6.	2.4	14
102	Fabrication and spectral properties of hot-pressed Co:MgAl2O4 transparent ceramics for saturable absorber. Journal of Alloys and Compounds, 2017, 724, 45-50.	5.5	13
103	Perfectly transparent pore-free Nd3+-doped Sr9GdF21 polycrystalline ceramics elaborated from single-crystal ceramization. Journal of the European Ceramic Society, 2017, 37, 4912-4918.	5.7	13
104	Fabrication and properties of 10â€at.% Yb:Y3Sc1.5Al3.5O12 transparent ceramics. Optical Materials, 2019, 88, 339-344.	3.6	13
105	Specific absorption in Y3Al5O12:Eu ceramics and the role of stable Eu2+ in energy transfer processes. Journal of Materials Chemistry C, 2020, 8, 8823-8839.	5.5	13
106	Fabrication and characterization of Tb3Al5O12 magneto-optical ceramics by solid-state reactive sintering. Optical Materials, 2020, 102, 109795.	3.6	13
107	Study of Yb:YAG ceramic slab with Cr4+:YAG edge cladding. Ceramics International, 2014, 40, 8879-8883.	4.8	12
108	Diode-pumped tape casting planar waveguide YAG/Tm:YAG/YAG ceramic laser at 201376  nm. Optics Let 2016, 41, 254.	ters,	12

#	Article	IF	Citations
109	The influences of stoichiometry on the sintering behavior, optical and scintillation properties of Pr:LuAG ceramics. Journal of the European Ceramic Society, 2018, 38, 4252-4259.	5.7	12
110	Effect of air annealing on the optical properties and laser performance of Yb:YAG transparent ceramics. Optical Materials, 2019, 95, 109203.	3.6	12
111	Influence of CaO on microstructure and properties of MgAl2O4 transparent ceramics. Optical Materials, 2021, 111, 110604.	3.6	12
112	Fabrication and Optical Property of Nd:Lu ₂ O ₃ Transparent Ceramics for Solid-state Laser Applications. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 210.	1.3	12
113	Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics. Optical Materials, 2016, 60, 221-229.	3.6	11
114	Hot-pressing of zinc sulfide infrared transparent ceramics from nanopowders synthesized by the solvothermal method. Ceramics International, 2018, 44, 747-752.	4.8	11
115	Fabrication of Nd:YAG transparent ceramics from co-precipitated powders by vacuum pre-sintering and HIP post-treatment. Optical Materials, 2020, 101, 109728.	3.6	11
116	Pressureless Sintering of YIG Ceramics from Coprecipitated Nanopowders. Magnetochemistry, 2021, 7, 56.	2.4	11
117	Sintering parameter optimization of Tb ₃ Al ₅ O ₁₂ magnetoâ€optical ceramics by vacuum sintering and HIP postâ€treatment. Journal of the American Ceramic Society, 2021, 104, 2116-2124.	3.8	11
118	Fabrication and properties of non-stoichiometric Tb2(Hf1â^'xTbx)2O7â^'x magneto-optical ceramics. Journal of Advanced Ceramics, 2022, 11, 784-793.	17.4	11
119	Solidâ€State Reactive Sintering and Optical Characteristics of Transparent <scp>Er:YAG</scp> Laser Ceramics. Journal of the American Ceramic Society, 2012, 95, 1029-1032.	3.8	10
120	Microstructure evolution in two-step-sintering process toward transparent Ce:(Y,Gd)3(Ga,Al)5O12 scintillation ceramics. Journal of Alloys and Compounds, 2020, 846, 156377.	5.5	10
121	Fabrication and properties of transparent Tb2Ti2O7 magneto-optical ceramics. Journal of the European Ceramic Society, 2021, 41, 7208-7214.	5.7	10
122	Terbium (III) Oxide (Tb2O3) Transparent Ceramics by Two-Step Sintering from Precipitated Powder. Magnetochemistry, 2022, 8, 73.	2.4	10
123	Solid-state-reaction fabrication and properties of a high-doping Nd:YAG transparent laser ceramic. Frontiers of Chemical Engineering in China, 2008, 2, 248-252.	0.6	9
124	High doping Nd:YAG transparent ceramics fabricated by solidâ€state reactive sintering. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 933-939.	0.8	9
125	Fabrication and thermal effects of highly transparent polycrystalline Nd:YAG ceramics. Optical Materials, 2015, 49, 105-109.	3.6	9
126	Passively Q-switched Ho:YLF laser pumped by Tm3+-doped fiber laser. Optics and Laser Technology, 2016, 77, 55-58.	4.6	9

#	Article	IF	Citations
127	Fabrication, microstructure and luminescence properties of Cr 3+ doped Lu 3 Al 5 O 12 red scintillator ceramics. Optical Materials, 2017, 66, 487-493.	3.6	9
128	Fabrication and properties of Co:MgAl ₂ O ₄ transparent ceramics for a saturable absorber from coprecipitated nanopowder. Journal of the American Ceramic Society, 2019, 102, 3097-3102.	3.8	9
129	Influence of terminal pH value on co-precipitated nanopowders for yttria-stabilized ZrO2 transparent ceramics. Optical Materials, 2019, 98, 109475.	3.6	9
130	Fabrication and characterizations of Tm:Lu2O3 transparent ceramics for 2Âμm laser applications. Optical Materials, 2022, 131, 112705.	3.6	9
131	Magneto-Optical and Thermo-Optical Properties of Ce, Pr, and Ho Doped TAG Ceramics. IEEE Journal of Quantum Electronics, 2019, 55, 1-8.	1.9	8
132	Influence of Lanthanum Concentration on Microstructure of (Ho 1– x La x) 2 O 3 Magnetoâ€Optical Ceramics. Physica Status Solidi (B): Basic Research, 2020, 257, 1900500.	1.5	8
133	An in depth characterization of the spectroscopic properties and laser action of 10 at% Yb doped Y3ScxAl5-xO12 (x = 0.25, 0.5, 1.0, 1.5) transparent ceramics. Ceramics International, 2020, 46, 17252-17260.	4.8	8
134	Ultra-fast High-temperature Sintering (UHS) of translucent alumina. Open Ceramics, 2022, 9, 100202.	2.0	8
135	Optimization of dispersing agents for preparing YAG transparent ceramics. Journal of Rare Earths, 2013, 31, 507-511.	4.8	7
136	Influences of Solid Loadings on the Microstructures and the Optical Properties of <scp>Y</scp> b: <scp>YAG</scp> Ceramics. International Journal of Applied Ceramic Technology, 2015, 12, 418-425.	2.1	7
137	Effect of ammonium carbonate to metal ions molar ratio on synthesis and sintering of Nd:YAG nanopowders. Optical Materials, 2018, 80, 127-137.	3.6	7
138	Ultra-low energy joining: An invisible strong bond at room temperature. Journal of the European Ceramic Society, 2019, 39, 5358-5363.	5.7	7
139	Influence of co-doped alumina on the microstructure and radioluminescence of SrHfO3:Ce ceramics. Journal of the European Ceramic Society, 2020, 40, 449-455.	5.7	7
140	Heatâ€driven Tailored for Eliminating Nd 3+ Reâ€clusters in Nd 3+ ,Gd 3+ â€codoped SrF 2 Laser Ceramic. Journal of the American Ceramic Society, 2020, 103, 2562-2568.	3.8	7
141	Fabrication of Yb,La:CaF2 transparent ceramics by air pre-sintering with hot isostatic pressing. Optical Materials, 2021, 116, 111108.	3.6	7
142	Fabrication of Gd2O2S:Tb scintillation ceramics from the uniformly doped nanopowder. Optical Materials, 2021, 117, 111192.	3.6	7
143	Fabrication and long persistent luminescence of Ce3+-Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramics. Journal of Rare Earths, 2022, 40, 1699-1705.	4.8	7
144	Influence of calcium doping concentration on the performance of Ce,Ca:LuAG scintillation ceramics. Journal of the European Ceramic Society, 2022, 42, 6075-6084.	5.7	7

#	Article	IF	CITATIONS
145	Hot pressing of bimodal alumina powders with magnesium aluminosilicate (MAS) addition. Ceramics International, 2009, 35, 1377-1383.	4.8	6
146	Doubly Q-Switched Nd:YAG Ceramic Laser. Journal of Russian Laser Research, 2018, 39, 187-191.	0.6	6
147	Luminescence and scintillation characteristics of cerium doped Gd2YGa3Al2O12 ceramics. Optical Materials, 2019, 90, 20-25.	3.6	6
148	Fabrication and scintillation properties of Pr:Lu3Al5O12 transparent ceramics from co-precipitated nanopowders. Journal of Alloys and Compounds, 2020, 818, 152885.	5 . 5	6
149	Fabrication of Gd2O2S:Pr scintillation ceramics from water-bath synthesized nanopowders. Optical Materials, 2020, 104, 109946.	3 . 6	6
150	Fabrication and characterizations of Cr ³⁺ â€doped ZnGa ₂ O ₄ transparent ceramics with persistent luminescence. Journal of the American Ceramic Society, 2021, 104, 4927-4931.	3.8	6
151	Effect of dopant concentration on the optical characteristics of Cr3+:ZnGa2O4 transparent ceramics exhibiting persistent luminescence. Optical Materials, 2022, 125, 112127.	3.6	6
152	Fabrication of Nd:Lu 2.7 Gd 0.3 Al 5 O 12 transparent ceramics by solid-state reactive sintering. Optical Materials, $2017, 66, 422-427.$	3.6	5
153	Fabrication and laser performance of planar waveguide LuAG/Yb:LuAG/LuAG ceramics. Optical Materials, 2019, 89, 149-156.	3.6	5
154	Er ³⁺ â€doped CaF ₂ polycrystalline ceramic with perfect transparency for midâ€infrared laser. Journal of the American Ceramic Society, 2020, 103, 5808-5812.	3.8	5
155	Determination of the bulk fraction of spherical non-uniformities in high-density materials. Ceramics International, 2021, 47, 28932-28941.	4.8	5
156	Transparent non-stoichiometric Tb2.45Hf2O7.68 magneto-optical ceramics with high Verdet constant. Scripta Materialia, 2021, 204, 114158.	5.2	5
157	Tunable single-longitudinal-mode operation of a sandwich-type YAG/Ho:YAG/YAG ceramic laser. Infrared Physics and Technology, 2016, 78, 40-44.	2.9	4
158	Re-clustering of neodymium ions in neodymium, buffer ion-codoped alkaline-earth fluoride transparent ceramics. CrystEngComm, 2017, 19, 4480-4484.	2.6	4
159	Transparent Y0.16Zr0.84O1.92 ceramics sintered from co-precipitated nanopowder. Optical Materials, 2020, 100, 109645.	3.6	4
160	Fine-grained Ce,Y:SrHfO ₃ Scintillation Ceramics Fabricated by Hot Isostatic Pressing. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 1118.	1.3	4
161	Influence of presintering temperature on magnesium aluminate spinel transparent ceramics fabricated by solidâ€state reactive sintering. International Journal of Applied Ceramic Technology, 2022, 19, 367-374.	2.1	4
162	Resonantly pumped high power acousto-optical Q-switched Ho:YAG ceramic laser. Optik, 2016, 127, 1595-1598.	2.9	3

#	Article	IF	CITATIONS
163	LD pumped passively Q-switched ceramic Nd:YAG 946Ânm laser with a high peak power output. Optical and Quantum Electronics, 2016, 48, 1.	3.3	3
164	A kind of bilayer structure ceramic scintillators designed for phoswich detectors. Journal of the American Ceramic Society, 2017, 100, 5593-5600.	3.8	3
165	Optimization of Diode-Pumped Continuous-Wave Tape-Casting YAG/Nd:YAG/YAG-Ceramic Lasers. Journal of Russian Laser Research, 2017, 38, 539-543.	0.6	3
166	Broadening emission band of Yb:LuScO 3 transparent ceramics for ultrashort pulse laser. Journal of the American Ceramic Society, 2021, 104, 6064-6073.	3.8	3
167	Fabrication, microstructure and properties of transparent Yb:Y2O3 ceramics from co-precipitated nanopowders. Optical Materials, 2021, 122, 111792.	3.6	3
168	Highly transparent Ce-doped yttria stabilized zirconia ceramics with bright red color. Optical Materials, 2022, 129, 112484.	3.6	3
169	Doubly Q-switched tape casting YAG/Nd:YAG/YAG ceramic laser. Journal of Modern Optics, 2018, 65, 1549-1553.	1.3	2
170	Third-order nonlinear optical response of Yb:YAG ceramics under femtosecond laser irradiation. Optical Materials, 2019, 98, 109435.	3.6	2
171	Pump coupling optimization of a native inhomogeneous planar waveguide laser. Optics Communications, 2019, 435, 195-201.	2.1	1