Jeffrey Bokor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4569591/publications.pdf

Version: 2024-02-01

195 papers 13,941 citations

52 h-index 23533 111 g-index

200 all docs

 $\begin{array}{c} 200 \\ \\ \text{docs citations} \end{array}$

times ranked

200

15420 citing authors

#	Article	IF	CITATIONS
1	RKKY Exchange Bias Mediated Ultrafast Allâ€Optical Switching of a Ferromagnet. Advanced Functional Materials, 2022, 32, 2107490.	14.9	17
2	Magnetic state switching in FeGa microstructures. Smart Materials and Structures, 2022, 31, 035005.	3.5	5
3	Progress toward picosecond on-chip magnetic memory. Applied Physics Letters, 2022, 120, .	3.3	8
4	Bottom-Up Synthesized Graphene Nanoribbon Transistors. , 2022, , .		0
5	Growth Optimization and Device Integration of Narrowâ€Bandgap Graphene Nanoribbons. Small, 2022, 18, .	10.0	17
6	Accelerated Ultrafast Magnetization Dynamics at Graphene/CoGd Interfaces. ACS Nano, 2022, 16, 9620-9630.	14.6	2
7	Local negative permittivity and topological phase transition in polar skyrmions. Nature Materials, 2021, 20, 194-201.	27.5	86
8	Role of element-specific damping in ultrafast, helicity-independent, all-optical switching dynamics in amorphous (Gd,Tb)Co thin films. Physical Review B, 2021, 103, .	3.2	40
9	Influence of dislocations and twin walls in BaTiO3 on the voltage-controlled switching of perpendicular magnetization. Physical Review Materials, 2021, 5, .	2.4	3
10	Unifying femtosecond and picosecond single-pulse magnetic switching in Gd-Fe-Co. Physical Review B, 2021, 103, .	3.2	25
11	Synergetic Bottom-Up Synthesis of Graphene Nanoribbons by Matrix-Assisted Direct Transfer. Journal of the American Chemical Society, 2021, 143, 4174-4178.	13.7	23
12	Singleâ€Domain Multiferroic Arrayâ€Addressable Terfenolâ€D (SMArT) Micromagnets for Programmable Singleâ€Cell Capture and Release. Advanced Materials, 2021, 33, e2006651.	21.0	20
13	Engineering new limits to magnetostriction through metastability in iron-gallium alloys. Nature Communications, 2021, 12, 2757.	12.8	14
14	Localized strain profile in surface electrode array for programmable composite multiferroic devices. Applied Physics Letters, 2021, 118, .	3.3	5
15	Singleâ€Cell Manipulation: Singleâ€Domain Multiferroic Arrayâ€Addressable Terfenolâ€D (SMArT) Micromagnets for Programmable Singleâ€Cell Capture and Release (Adv. Mater. 20/2021). Advanced Materials, 2021, 33, 2170159.	21.0	2
16	Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593, 211-217.	27.8	579
17	Bottomâ€Up Synthesized Nanoporous Graphene Transistors. Advanced Functional Materials, 2021, 31, 2103798.	14.9	15
18	Transfer-Free Synthesis of Atomically Precise Graphene Nanoribbons on Insulating Substrates. ACS Nano, 2021, 15, 2635-2642.	14.6	27

#	Article	IF	CITATIONS
19	Bottomâ€Up Synthesized Nanoporous Graphene Transistors (Adv. Funct. Mater. 47/2021). Advanced Functional Materials, 2021, 31, 2170348.	14.9	2
20	Short-Channel Double-Gate FETs with Atomically Precise Graphene Nanoribbons. , 2021, , .		5
21	Contact Engineering for High-Performance N-Type 2D Semiconductor Transistors. , 2021, , .		8
22	A Dual Magnetic Tunnel Junctionâ€Based Neuromorphic Device. Advanced Intelligent Systems, 2020, 2, 2000143.	6.1	11
23	Toward Intrinsic Ferroelectric Switching in Multiferroic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:< td=""><td>7.8 ml:mn>3<</td><td>:/<mark>37</mark>ml:mn>-</td></mpl:<></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	7.8 ml:mn>3<	:/ <mark>37</mark> ml:mn>-
24	Positive Effects of Summer Research Program on Diverse Community College Students. , 2020, , .		4
25	Spin–orbit torque switching of a ferromagnet with picosecond electrical pulses. Nature Electronics, 2020, 3, 680-686.	26.0	63
26	Statistically meaningful measure of domain-wall roughness in magnetic thin films. Physical Review B, 2020, 101, .	3.2	9
27	Manipulating magnetoelectric energy landscape in multiferroics. Nature Communications, 2020, 11, 2836.	12.8	42
28	Tunable Magnetoelastic Effects in Voltage-Controlled Exchange-Coupled Composite Multiferroic Microstructures. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6752-6760.	8.0	12
29	Progress towards ultrafast spintronics applications. Journal of Magnetism and Magnetic Materials, 2020, 502, 166478.	2.3	51
30	Disk-shaped magnetic particles for cancer therapy. Applied Physics Reviews, 2020, 7, .	11.3	32
31	Ultrafast magnetization switching in nanoscale magnetic dots. Applied Physics Letters, 2019, 114, .	3.3	39
32	Intrinsic Controllable Magnetism of Graphene Grown on Fe. Journal of Physical Chemistry C, 2019, 123, 26870-26876.	3.1	10
33	Nanomagnetic Particle-Based Information Processing. IEEE Nanotechnology Magazine, 2019, 18, 983-988.	2.0	2
34	Low-Temperature Side Contact to Carbon Nanotube Transistors: Resistance Distributions Down to 10 nm Contact Length. Nano Letters, 2019, 19, 1083-1089.	9.1	42
35	Demonstration of spin transfer torque (STT) magnetic recording. Applied Physics Letters, 2019, 114, .	3.3	5
36	Effects of Interface Induced Natural Strains on Magnetic Properties of FeRh. Nanomaterials, 2019, 9, 574.	4.1	7

#	Article	IF	CITATIONS
37	Electric-field controlled magnetic reorientation in exchange coupled CoFeB/Ni bilayer microstructures. Journal of Physics: Conference Series, 2019, 1407, 012024.	0.4	1
38	Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure. Nano Letters, 2018, 18, 1952-1961.	9.1	44
39	Bi-directional coupling in strain-mediated multiferroic heterostructures with magnetic domains and domain wall motion. Scientific Reports, 2018, 8, 5207.	3.3	33
40	Negative Differential Resistance and Steep Switching in Chevron Graphene Nanoribbon Field-Effect Transistors. IEEE Electron Device Letters, 2018, 39, 143-146.	3.9	18
41	Enhanced magnetoelectric coupling in a composite multiferroic system via interposing a thin film polymer. AIP Advances, 2018, 8, .	1.3	14
42	3D multilevel spin transfer torque devices. Applied Physics Letters, 2018, 112, .	3.3	15
43	Scaling of all-optical switching to nanometer dimensions. , 2018, , .		0
44	Probe-based Spin Torque Transfer Device for Writing Hard Disks. , 2018, , .		0
45	Cytocompatible magnetostrictive microstructures for nano- and microparticle manipulation on linear strain response piezoelectrics. Multifunctional Materials, 2018, 1, 014004.	3.7	6
46	Self-assembled single-digit nanometer memory cells. Applied Physics Letters, 2018, 113, 062404.	3.3	3
47	Electrically controlled switching of the magnetization state in multiferroic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>BaTi</mml:mi><mml:msub><mm mathvariant="normal">O<mml:mn>3</mml:mn></mm></mml:msub><mml:mtext>/</mml:mtext><mml:mi>submicrometer structures. Physical Review Materials, 2018, 2, .</mml:mi></mml:mrow></mml:math>	l:mi, 4 CoFe <th>nl:10 nl:mi></th>	nl:10 nl:mi>
48	Deterministic multi-step rotation of magnetic single-domain state in Nickel nanodisks using multiferroic magnetoelastic coupling. Journal of Magnetism and Magnetic Materials, 2017, 439, 196-202.	2.3	14
49	Interface Engineering of Domain Structures in BiFeO ₃ Thin Films. Nano Letters, 2017, 17, 486-493.	9.1	69
50	Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nature Communications, 2017, 8, 633.	12.8	312
51	Single shot ultrafast all optical magnetization switching of ferromagnetic Co/Pt multilayers. Applied Physics Letters, 2017, 111, .	3.3	60
52	Ultrafast magnetization reversal by picosecond electrical pulses. Science Advances, 2017, 3, e1603117.	10.3	127
53	Electric current induced ultrafast demagnetization. Physical Review B, 2017, 96, .	3. 2	28
54	Ultrafast magnetic switching of GdFeCo with electronic heat currents. Physical Review B, 2017, 95, .	3.2	43

#	Article	IF	CITATIONS
55	Ultrafast magnetic memory bits using all-optical magnetic switching. , 2017, , .		O
56	Properties of magnetic tunneling junction devices with characteristic sizes in sub-5-nm range. , 2017, , .		0
57	Experimental test of Landauer's principle in single-bit operations on nanomagnetic memory bits. Science Advances, 2016, 2, e1501492.	10.3	135
58	MoS ₂ transistors with 1-nanometer gate lengths. Science, 2016, 354, 99-102.	12.6	1,140
59	Model for multishot all-thermal all-optical switching in ferromagnets. Physical Review B, 2016, 94, .	3.2	63
60	Role of electron and phonon temperatures in the helicity-independent all-optical switching of GdFeCo. Physical Review B, 2016, 94, .	3.2	67
61	The Physics of Spin-Transfer Torque Switching in Magnetic Tunneling Junctions in Sub-10 nm Size Range. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	9
62	Design Requirements for a Spintronic MTJ Logic Device for Pipelined Logic Applications. IEEE Transactions on Electron Devices, 2016, 63, 1754-1761.	3.0	6
63	Deterministic Domain Wall Motion Orthogonal To Current Flow Due To Spin Orbit Torque. Scientific Reports, 2015, 5, 11823.	3.3	64
64	Direct optical detection of current induced spin accumulation in metals by magnetization-induced second harmonic generation. Applied Physics Letters, 2015 , 107 , .	3.3	8
65	Deterministic doping and the exploration of spin qubits. AIP Conference Proceedings, 2015, , .	0.4	7
66	Anomalous properties of sub-10-nm magnetic tunneling junctions. , 2015, , .		1
67	Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10310-10315.	7.1	236
68	Highly uniform carbon nanotube nanomesh network transistors. Nano Research, 2015, 8, 1320-1326.	10.4	17
69	Electrically Driven Magnetic Domain Wall Rotation in Multiferroic Heterostructures to Manipulate Suspended On-Chip Magnetic Particles. ACS Nano, 2015, 9, 4814-4826.	14.6	78
70	Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains. Nature Communications, 2015, 6, 6466.	12.8	26
71	Stark shift and field ionization of arsenic donors in 28Si-silicon-on-insulator structures. Applied Physics Letters, 2014, 104, .	3.3	17
72	High-performance thin-film transistors produced from highly separated solution-processed carbon nanotubes. Applied Physics Letters, 2014, 104, .	3 . 3	23

#	Article	IF	CITATIONS
73	Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic. Applied Physics A: Materials Science and Processing, 2013, 111, 413-421.	2.3	14
74	Bottom-up graphene nanoribbon field-effect transistors. Applied Physics Letters, 2013, 103, .	3.3	218
75	Short-Channel Transistors Constructed with Solution-Processed Carbon Nanotubes. ACS Nano, 2013, 7, 798-803.	14.6	83
76	Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips. Optics Express, 2013, 21, 8166.	3.4	55
77	All-Electrical Nuclear Spin Polarization of Donors in Silicon. Physical Review Letters, 2013, 110, 057601.	7.8	12
78	A Spin Quantum Bit Architecture with Coupled Donors and Quantum Dots in Silicon. , 2013, , .		0
79	Electrical activation and electron spin resonance measurements of implanted bismuth in isotopically enriched silicon-28. Applied Physics Letters, 2012, 100, .	3.3	47
80	Comparative study of solution-processed carbon nanotube network transistors. Applied Physics Letters, 2012, 101, 112104.	3.3	30
81	Improved single ion implantation with scanning probe alignment. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	1.2	12
82	Signal propagation in dipole coupled nanomagnets for logic applications., 2012,,.		2
83	Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nature Photonics, 2012, 6, 838-844.	31.4	308
84	Investigation of Defects and Errors in Nanomagnetic Logic Circuits. IEEE Nanotechnology Magazine, 2012, 11, 760-762.	2.0	42
85	Streptavidin as CNTs and DNA Linker for the Specific Electronic and Optical Detection of DNA Hybridization. Journal of Physical Chemistry C, 2012, 116, 22579-22586.	3.1	15
86	Mapping Local Charge Recombination Heterogeneity by Multidimensional Nanospectroscopic Imaging. Science, 2012, 338, 1317-1321.	12.6	145
87	Temperature dependence of heat dissipation during Landauer erasure of nanomagnets., 2012,,.		0
88	Error immunity techniques for nanomagnetic logic. , 2012, , .		1
89	Harnessing Chemical Raman Enhancement for Understanding Organic Adsorbate Binding on Metal Surfaces. Journal of Physical Chemistry Letters, 2012, 3, 1357-1362.	4.6	26
90	Cascade-like signal propagation in chains of concave nanomagnets. Applied Physics Letters, 2012, 100, 152406.	3.3	19

#	Article	IF	Citations
91	Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces. Physical Review Letters, 2011, 106, 083003.	7.8	123
92	Electrically detected magnetic resonance in a W-band microwave cavity. Review of Scientific Instruments, 2011, 82, 034704.	1.3	9
93	Computing in Thermal Equilibrium With Dipole-Coupled Nanomagnets. IEEE Nanotechnology Magazine, 2011, 10, 1401-1404.	2.0	12
94	Radiation Engineering of Optical Antennas for Maximum Field Enhancement. Nano Letters, 2011, 11, 2606-2610.	9.1	165
95	Exploring the Thermodynamic Limits of Computation in Integrated Systems: Magnetic Memory, Nanomagnetic Logic, and the Landauer Limit. Physical Review Letters, 2011, 107, 010604.	7.8	86
96	Direct observation of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs. Nature Physics, 2011, 7, 303-306.	16.7	82
97	Hyperspectral Nanoscale Imaging on Dielectric Substrates with Coaxial Optical Antenna Scan Probes Nano Letters, 2011, 11, 1201-1207.	9.1	111
98	Ultimate device scaling: Intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length. , $2011, \ldots$		65
99	Electrically Detected Magnetic Resonance of Neutral Donors Interacting with a Two-Dimensional Electron Gas. Physical Review Letters, 2011, 106, 207601.	7.8	25
100	Detecting single nanomagnet dynamics beyond the diffraction limit in varying magnetostatic environments. Applied Physics Letters, $2011,98,\ldots$	3.3	17
101	(Invited) Single-Digit Nanofabrication Routes for Tailoring and Assembling Graphene into Functional Nanostructures and Devices. ECS Transactions, 2011, 35, 55-65.	0.5	0
102	Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami. Journal of the American Chemical Society, 2010, 132, 3248-3249.	13.7	502
103	Electronic Anabolic Steroid Recognition with Carbon Nanotube Field-Effect Transistors. ACS Nano, 2010, 4, 1473-1480.	14.6	19
104	Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography. Nano Letters, 2010, 10, 2454-2460.	9.1	302
105	Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Letters, 2010, 10, 1542-1548.	9.1	439
106	Characterization of the junction capacitance of metal-semiconductor carbon nanotube Schottky contacts. Applied Physics Letters, 2010, 96, .	3.3	18
107	Spin-dependent scattering in a silicon transistor. Physical Review B, 2009, 80, .	3.2	14
108	Device fabrication and transport measurements of FinFETs built with < sup > 28 < /sup > Si SOI wafers toward donor qubits in silicon. Semiconductor Science and Technology, 2009, 24, 105022.	2.0	9

#	Article	IF	Citations
109	Dopant profiling and surface analysis of silicon nanowires using capacitance–voltage measurements. Nature Nanotechnology, 2009, 4, 311-314.	31.5	159
110	Mapping of ion beam induced current changes in FinFETs. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 1222-1225.	1.4	11
111	Critical issues in the formation of quantum computer test structures by ion implantation. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2563-2566.	1.4	19
112	DNA directed assembly of nanoparticle linear structure for nanophotonics. Journal of Vacuum Science & Technology B, 2009, 27, 184.	1.3	6
113	Label-Free DNA Biosensors Based on Functionalized Carbon Nanotube Field Effect Transistors. Nano Letters, 2009, 9, 530-536.	9.1	173
114	Diameter-Dependent Electron Mobility of InAs Nanowires. Nano Letters, 2009, 9, 360-365.	9.1	353
115	Simulation Studies of Nanomagnet-Based Logic Architecture. Nano Letters, 2008, 8, 4173-4178.	9.1	144
116	Single atom doping for quantum device development in diamond and silicon. Journal of Vacuum Science & Technology B, 2008, 26, 2596-2600.	1.3	47
117	Mechanical detection and mode shape imaging of vibrational modes of micro and nanomechanical resonators by dynamic force microscopy. Journal of Physics: Conference Series, 2008, 100, 052009.	0.4	3
118	Spin-dependent scattering off neutral antimony donors in Si28 field-effect transistors. Applied Physics Letters, 2007, 91, .	3.3	39
119	Optimization of nano-magneto-optic sensitivity using dual dielectric layer enhancement. Applied Physics Letters, 2007, 90, 252504.	3.3	18
120	Detection of nanomechanical vibrations by dynamic force microscopy in higher cantilever eigenmodes. Applied Physics Letters, 2007, 91, .	3.3	18
121	Detection of low energy single ion impacts in micron scale transistors at room temperature. Applied Physics Letters, 2007, 91, .	3.3	32
122	Size dependent damping in picosecond dynamics of single nanomagnets. Applied Physics Letters, 2007, 90, 202504.	3.3	54
123	Mode shape imaging of out-of-plane and in-plane vibrating RF micromechanical resonators by atomic force microscopy. Microelectronic Engineering, 2007, 84, 1354-1357.	2.4	8
124	Electrical activation and electron spin coherence of ultralow dose antimony implants in silicon. Applied Physics Letters, 2006, 88, 112101.	3.3	69
125	Magneto-Optical Observation of Picosecond Dynamics of Single Nanomagnets. Nano Letters, 2006, 6, 2939-2944.	9.1	85
126	Effect of Diameter Variation in a Large Set of Carbon Nanotube Transistors. Nano Letters, 2006, 6, 1364-1368.	9.1	61

#	Article	IF	CITATIONS
127	Signal Enhancement of Time-resolved Magneto-optic Measurements on Individual Nanomagnets. , 2006,		0
128	Strategies for integration of donor electron spin qubits in silicon. Microelectronic Engineering, 2006, 83, 1814-1817.	2.4	13
129	Prospects for emerging nanoelectronics in mainstream information processing systems. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, 2006, , .	0.0	0
130	Prospects for Emerging Nanoelectronics in Mainstream Information Processing Systems. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, 2006, , .	0.0	0
131	A Comparison Study of Symmetric Ultrathin-Body Double-Gate Devices With Metal Source/Drain and Doped Source/Drain. IEEE Transactions on Electron Devices, 2005, 52, 1859-1867.	3.0	103
132	Structural Optimization of SUTBDG Devices for Low-Power Applications. IEEE Transactions on Electron Devices, 2005, 52, 360-366.	3.0	6
133	Ion implantation with scanning probe alignment. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2798.	1.6	15
134	Scanning acoustic force microscopy characterization of thermal expansion effects on the electromechanical properties of film bulk acoustic resonators. Applied Physics Letters, 2005, 86, 084102.	3.3	5
135	Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor-liquid-solid method. Applied Physics Letters, 2005, 87, 053111.	3.3	122
136	Cavity-Enhanced Magnetooptical Observation of Magnetization Reversal in Individual Single-Domain Nanomagnets. Nano Letters, 2005, 5, 1413-1417.	9.1	36
137	Single ion implantation with scanning probe alignment. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 2992.	1.6	11
138	Characterization of the Ultrathin Vertical Channel CMOS Technology. IEEE Transactions on Electron Devices, 2004, 51, 106-112.	3.0	15
139	A Simulation Study of Gate Line Edge Roughness Effects on Doping Profiles of Short-Channel MOSFET Devices. IEEE Transactions on Electron Devices, 2004, 51, 228-232.	3.0	53
140	Sensitive detection of laser damage to Mo/Si multilayers by picosecond ultrasonics. Applied Physics B: Lasers and Optics, 2004, 79, 107-112.	2.2	3
141	Is Gate Line Edge Roughness a First-Order Issue in Affecting the Performance of Deep Sub-Micro Bulk MOSFET Devices?. IEEE Transactions on Semiconductor Manufacturing, 2004, 17, 357-361.	1.7	37
142	Monolithic Integration of Carbon Nanotube Devices with Silicon MOS Technology. Nano Letters, 2004, 4, 123-127.	9.1	131
143	Sensitivity of double-gate and finfet devices to process variations. IEEE Transactions on Electron Devices, 2003, 50, 2255-2261.	3.0	182
144	Fabrication of Sub-10-nm Silicon Nanowire Arrays by Size Reduction Lithography. Journal of Physical Chemistry B, 2003, 107, 3340-3343.	2.6	169

#	Article	IF	Citations
145	Solid state quantum computer development in silicon with single ion implantation. Journal of Applied Physics, 2003, 94, 7017-7024.	2.5	97
146	Hydrogen annealing effect on DC and low-frequency noise characteristics in CMOS FinFETs. IEEE Electron Device Letters, 2003, 24, 186-188.	3.9	47
147	Investigation of NiSi and TiSi as CMOS gate materials. IEEE Electron Device Letters, 2003, 24, 634-636.	3.9	48
148	Extremely scaled silicon nano-CMOS devices. Proceedings of the IEEE, 2003, 9, 1860-1873.	21.3	214
149	Low-frequency noise characteristics of ultrathin body p-MOSFETs with molybdenum gate. IEEE Electron Device Letters, 2003, 24, 31-33.	3.9	12
150	Low-frequency noise characteristics in p-channel FinFETs. IEEE Electron Device Letters, 2002, 23, 722-724.	3.9	19
151	Gate line-edge roughness effects in 50-nm bulk MOSFET devices. , 2002, 4689, 733.		39
152	Design and fabrication of 50-nm thin-body p-MOSFETs with a SiGe heterostructure channel. IEEE Transactions on Electron Devices, 2002, 49, 279-286.	3.0	29
153	Sub-50 nm P-channel FinFET. IEEE Transactions on Electron Devices, 2001, 48, 880-886.	3.0	243
154	Sub-60-nm quasi-planar FinFETs fabricated using a simplified process. IEEE Electron Device Letters, 2001, 22, 487-489.	3.9	131
155	Experimental and theoretical studies on Mo/Si multilayers for extreme ultraviolet lithography using picosecond ultrasonics. , 2001, , .		0
156	FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Transactions on Electron Devices, 2000, 47, 2320-2325.	3.0	1,317
157	Extreme ultraviolet carrier-frequency shearing interferometry of a lithographic four-mirror optical system. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2939.	1.6	58
158	Nanoscale ultra-thin-body silicon-on-insulator P-MOSFET with a SiGe/Si heterostructure channel. IEEE Electron Device Letters, 2000, 21, 161-163.	3.9	45
159	Ultrathin-body SOI MOSFET for deep-sub-tenth micron era. IEEE Electron Device Letters, 2000, 21, 254-255.	3.9	173
160	Nondestructive picosecond-ultrasonic characterization of Mo/Si extreme ultraviolet multilayer reflection coatings. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 3014.	1.6	7
161	Picosecond ultrasonic study of Mo/Si multilayer structures using an alternating-pump technique. Applied Physics Letters, 1999, 74, 320-322.	3.3	15
162	Thermal Stabilization of Non-Stoichiometric GaAs through Beryllium Doping. Materials Research Society Symposia Proceedings, 1998, 510, 55.	0.1	1

#	ARTICLE	IF	CITATIONS
163	Minimum critical defects in extreme-ultraviolet lithography masks. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 2467.	1.6	17
164	High field hole velocity and velocity overshoot in silicon inversion layers. IEEE Electron Device Letters, 1997, 18, 54-56.	3.9	17
165	AC output conductance of SOI MOSFETs and impact on analog applications. IEEE Electron Device Letters, 1997, 18, 36-38.	3.9	15
166	Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI. IEEE Transactions on Electron Devices, 1997, 44, 414-422.	3.0	350
167	High-field transport of inversion-layer electrons and holes including velocity overshoot. IEEE Transactions on Electron Devices, 1997, 44, 664-671.	3.0	31
168	High-intensity terahertz pulses at 1-kHz repetition rate. IEEE Journal of Quantum Electronics, 1996, 32, 1839-1846.	1.9	120
169	Noncontact probing of metalâ€oxideâ€semiconductor inversion layer mobility. Applied Physics Letters, 1996, 69, 1779-1780.	3.3	5
170	Surface adhesion reduction in silicon microstructures using femtosecond laser pulses. Applied Physics Letters, 1996, 68, 197-199.	3.3	33
171	Advanced lithography for ULSI. IEEE Circuits and Devices: the Magazine of Electronic and Photonic Systems, 1996, 12, 11-15.	0.4	2
172	Ultrafast carrier dynamics on the Si(100)2 \tilde{A} —1 surface. Physical Review B, 1996, 54, R17300-R17303.	3.2	27
173	ULTRAFAST HOT ELECTRON RELAXATION IN METALS. Advanced Series in Physical Chemistry, 1995, , 327-346.	1.5	1
174	Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films. Physical Review Letters, 1992, 68, 2834-2837.	7.8	435
175	Electron thermalization in gold. Physical Review B, 1992, 46, 13592-13595.	3.2	462
176	Multiphoton ultraviolet spectroscopy of some6plevels in krypton. Physical Review A, 1980, 21, 1453-1459.	2.5	72
177	Dopplerâ€free spectroscopy of the ν2band in14NH3: Application to 16â€Î¼m generation. Journal of Applied Physics, 1979, 50, 4541-4544.	2.5	8
178	ArF laser photolysis of OCSe. II. Effect of vibrational excitation on Se(1S) quantum yields. Journal of Chemical Physics, 1979, 70, 5593-5597.	3.0	11
179	Channel doping engineering of MOSFET with adaptable threshold voltage using body effect for low voltage and low power applications. , 0, , .		18
180	Time-resolved reflectivity measurement of thermally stabilized low temperature grown GaAs doped with beryllium. , 0, , .		1

#	Article	IF	Citations
181	Remote charge scattering in MOSFETs with ultra-thin gate dielectrics. , 0, , .		18
182	MOSFETs with 9 to 13 A thick gate oxides., 0,,.		14
183	A bulk-Si-compatible ultrathin-body SOI technology for sub-100 nm MOSFETs. , 0, , .		8
184	Ultra-thin body SOI MOSFET for deep-sub-tenth micron era. , 0, , .		30
185	Sub 50-nm FinFET: PMOS., 0,,.		150
186	Complementary silicide source/drain thin-body MOSFETs for the 20 nm gate length regime. , 0, , .		136
187	60 nm planarized ultra-thin body solid phase epitaxy MOSFETs. , 0, , .		4
188	Gate length scaling and threshold voltage control of double-gate MOSFETs., 0,,.		100
189	30 nm ultra-thin-body SOI MOSFET with selectively deposited Ge raised S/D., 0,,.		17
190	FinFET-a quasi-planar double-gate MOSFET., 0,,.		38
191	Quasi-planar FinFETs with selectively grown germanium raised source/drain. , 0, , .		2
192	Design analysis of thin-body silicide source/drain devices. , 0, , .		12
193	Quasi-planar NMOS FinFETs with sub-100 nm gate lengths. , 0, , .		12
194	FinFET process refinements for improved mobility and gate work function engineering. , 0, , .		66
195	Reliability study of CMOS FinFETs., 0,,.		22