Baohua Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4569167/publications.pdf

Version: 2024-02-01

157	17,681	70	130
papers	citations	h-index	g-index
157 all docs	157 docs citations	157 times ranked	14300 citing authors

#	Article	IF	CITATIONS
1	Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angewandte Chemie - International Edition, 2012, 51, 933-935.	13.8	1,437
2	Twinborn TiO ₂ –TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy and Environmental Science, 2017, 10, 1694-1703.	30.8	884
3	Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes. Advanced Materials, 2016, 28, 6932-6939.	21.0	751
4	An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy and Environmental Science, 2018, 11, 941-951.	30.8	731
5	Dendriteâ€Free, Highâ€Rate, Longâ€Life Lithium Metal Batteries with a 3D Crossâ€Linked Network Polymer Electrolyte. Advanced Materials, 2017, 29, 1604460.	21.0	604
6	Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte. ACS Nano, 2018, 12, 3140-3148.	14.6	439
7	Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research. Advanced Materials, 2019, 31, e1806620.	21.0	390
8	Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy, 2016, 22, 278-289.	16.0	382
9	A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nature Communications, 2018, 9, 3870.	12.8	367
10	Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. Journal of Power Sources, 2018, 389, 120-134.	7.8	359
11	SiO ₂ Hollow Nanosphereâ€Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Advanced Energy Materials, 2016, 6, 1502214.	19.5	346
12	Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy and Environmental Science, 2012, 5, 9595.	30.8	323
13	Deepâ€Eutecticâ€Solventâ€Based Selfâ€Healing Polymer Electrolyte for Safe and Longâ€Life Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 9134-9142.	13.8	292
14	Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nature Communications, 2019, 10, 725.	12.8	289
15	Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports, 2012, 2, 913.	3.3	284
16	Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. Journal of Materials Chemistry A, 2019, 7, 23378-23415.	10.3	248
17	Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nature Communications, 2020, 11, 4188.	12.8	226
18	Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. Journal of Power Sources, 2013, 239, 269-276.	7.8	223

#	Article	IF	CITATIONS
19	Advanced Nanostructured Anode Materials for Sodiumâ€lon Batteries. Small, 2017, 13, 1701835.	10.0	206
20	Ultrafine TiO ₂ Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium—Sulfur Battery. ACS Applied Materials & Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Decorated Carbon Nanofibers Account N	8.0	200
21	Suppressing Selfâ€Discharge and Shuttle Effect of Lithium–Sulfur Batteries with V ₂ O ₅ â€Decorated Carbon Nanofiber Interlayer. Small, 2017, 13, 1602539.	10.0	190
22	Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy, 2016, 30, 1-8.	16.0	179
23	A Stable Quasiâ€Solidâ€State Sodium–Sulfur Battery. Angewandte Chemie - International Edition, 2018, 57, 10168-10172.	13.8	178
24	Deep Eutectic Solvents for Boosting Electrochemical Energy Storage and Conversion: A Review and Perspective. Advanced Functional Materials, 2021, 31, 2011102.	14.9	172
25	A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries. Nano Energy, 2016, 21, 133-144.	16.0	168
26	Enhancement on Cycle Performance of Zn Anodes by Activated Carbon Modification for Neutral Rechargeable Zinc Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1439-A1444.	2.9	164
27	High electrochemical stability of a 3D cross-linked network PEO@nano-SiO ₂ composite polymer electrolyte for lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 6832-6839.	10.3	164
28	A review of gassing behavior in Li ₄ Ti ₅ O ₁₂ -based lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 6368-6381.	10.3	157
29	Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon, 2018, 127, 424-431.	10.3	150
30	NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 17057-17066.	10.3	149
31	Comprehensive Review of P2-Type Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ , a Potential Cathode for Practical Application of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials & Discrete Representation of Na-Ion Batteries. ACS Applied Materials	8.0	148
32	Redoxâ€Active Organic Sodium Anthraquinoneâ€2â€Sulfonate (AQS) Anchored on Reduced Graphene Oxide for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1802088.	19.5	147
33	Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon, 2015, 84, 434-443.	10.3	144
34	Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. Journal of Power Sources, 2012, 202, 253-261.	7.8	142
35	Combining Fast Li-lon Battery Cycling with Large Volumetric Energy Density: Grain Boundary Induced High Electronic and Ionic Conductivity in Li ₄ Ti ₅ O ₁₂ Spheres of Densely Packed Nanocrystallites. Chemistry of Materials, 2015, 27, 5647-5656.	6.7	142
36	An interwoven MoO ₃ @CNT scaffold interlayer for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 8612-8619.	10.3	141

#	Article	IF	Citations
37	A Study on the Open Circuit Voltage and State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature. Energies, 2018, 11, 2408.	3.1	137
38	Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon, 2015, 87, 347-356.	10.3	131
39	A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon, 2016, 98, 582-591.	10.3	128
40	Hierarchical MoS ₂ /Carbon microspheres as long-life and high-rate anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 5668-5677.	10.3	128
41	Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon, 2018, 127, 459-468.	10.3	123
42	N and S co-doped porous carbon spheres prepared using <scp>l</scp> -cysteine as a dual functional agent for high-performance lithium–sulfur batteries. Chemical Communications, 2015, 51, 17720-17723.	4.1	121
43	Selfâ€Healing Materials for Energyâ€Storage Devices. Advanced Functional Materials, 2020, 30, 1909912.	14.9	121
44	An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries. Energy Storage Materials, 2021, 34, 229-240.	18.0	120
45	Fe ₃ O ₄ -Decorated Porous Graphene Interlayer for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26264-26273.	8.0	117
46	Recent innovative configurations in high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 5222-5234.	10.3	115
47	Co–B Nanoflakes as Multifunctional Bridges in ZnCo ₂ O ₄ Microâ€∤Nanospheres for Superior Lithium Storage with Boosted Kinetics and Stability. Advanced Energy Materials, 2019, 9, 1803612.	19.5	114
48	Ultrafine Titanium Nitride Sheath Decorated Carbon Nanofiber Network Enabling Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1903229.	14.9	112
49	Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries. Nano Research, 2018, 11, 892-904.	10.4	110
50	Advanced Matrixes for Binderâ€Free Nanostructured Electrodes in Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1908445.	21.0	108
51	Self-Healing Janus Interfaces for High-Performance LAGP-Based Lithium Metal Batteries. ACS Energy Letters, 2020, 5, 1456-1464.	17.4	104
52	Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode. Energy Storage Materials, 2019, 18, 320-327.	18.0	102
53	Electrospun core–shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 7112-7120.	10.3	99
54	Nanostructured Anode Materials for Nonâ€aqueous Lithium Ion Hybrid Capacitors. Energy and Environmental Materials, 2018, 1, 75-87.	12.8	97

#	Article	IF	CITATIONS
55	A three-dimensional graphene skeleton as a fast electron and ion transport network for electrochemical applications. Journal of Materials Chemistry A, 2014, 2, 3031.	10.3	96
56	Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery. Journal of Materials Chemistry A, 2014, 2, 20059-20066.	10.3	92
57	Non-flammable electrolyte for dendrite-free sodium-sulfur battery. Energy Storage Materials, 2019, 23, 8-16.	18.0	92
58	Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of <i>ex situ</i> anodic pretreatment and an in-built gel polymer electrolyte. Journal of Materials Chemistry A, 2020, 8, 7197-7204.	10.3	91
59	A Simple Method for the Complete Performance Recovery of Degraded Ni-rich LiNi _{0.70} Co _{0.15} Mn _{0.15} O ₂ Cathode via Surface Reconstruction. ACS Applied Materials & Interfaces, 2019, 11, 14076-14084.	8.0	89
60	Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon, 2018, 140, 296-305.	10.3	88
61	A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. Journal of Materials Chemistry A, 2017, 5, 18888-18895.	10.3	85
62	A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithiumâ€"sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 20218-20224.	10.3	83
63	Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability. Journal of Materials Chemistry A, 2017, 5, 19934-19942.	10.3	82
64	Advances in Understanding Materials for Rechargeable Lithium Batteries by Atomic Force Microscopy. Energy and Environmental Materials, 2018, 1, 28-40.	12.8	80
65	"Concrete―inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery. Carbon, 2015, 93, 59-67.	10.3	78
66	Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 1828-1833.	5.1	78
67	High-Performance Quasi-Solid-State MXene-Based Li–l Batteries. ACS Central Science, 2019, 5, 365-373.	11.3	78
68	Constructing Effective Interfaces for Li _{1.5} (PO ₄) ₃ Pellets To Achieve Room-Temperature Hybrid Solid-State Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9911-9918.	8.0	77
69	In-Plane Highly Dispersed Cu ₂ O Nanoparticles for Seeded Lithium Deposition. Nano Letters, 2019, 19, 4601-4607.	9.1	75
70	Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in-situ solidification. Energy Storage Materials, 2020, 25, 613-620.	18.0	72
71	Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. Journal of Materials Chemistry A, 2015, 3, 13340-13349.	10.3	71
72	Electrostatic-spraying an ultrathin, multifunctional and compact coating onto a cathode for a long-life and high-rate lithium-sulfur battery. Nano Energy, 2016, 30, 138-145.	16.0	71

#	Article	IF	Citations
73	A sliced orange-shaped ZnCo 2 O 4 material as anode for high-performance lithium ion battery. Energy Storage Materials, 2017, 6, 61-69.	18.0	71
74	Structure and Electrochemical Properties of Zn-Doped Li[sub 4]Ti[sub 5]O[sub 12] as Anode Materials in Li-lon Battery. Electrochemical and Solid-State Letters, 2010, 13, A36.	2.2	67
75	Highâ€Density Microporous Li ₄ Ti ₅ O ₁₂ Microbars with Superior Rate Performance for Lithiumâ€lon Batteries. Advanced Science, 2017, 4, 1600311.	11.2	66
76	Deterioration mechanism of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ /graphite–SiO _x power batteries under high temperature and discharge cycling conditions. Journal of Materials Chemistry A, 2018, 6, 65-72.	10.3	66
77	Enabling flexible solid-state Zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy, 2020, 77, 105165.	16.0	65
78	Cyclized-polyacrylonitrile modified carbon nanofiber interlayers enabling strong trapping of polysulfides in lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 12973-12980.	10.3	64
79	Controlled synthesis of anisotropic hollow ZnCo2O4 octahedrons for high-performance lithium storage. Energy Storage Materials, 2018, 11, 184-190.	18.0	63
80	Monodispersed SnO 2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries. Energy Storage Materials, 2016, 3, 98-105.	18.0	60
81	Transition metal assisted synthesis of tunable pore structure carbon with high performance as sodium/lithium ion battery anode. Carbon, 2018, 129, 667-673.	10.3	58
82	Ultrafast-Charging and Long-Life Li-Ion Battery Anodes of TiO ₂ -B and Anatase Dual-Phase Nanowires. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35917-35926.	8.0	57
83	Boost Anion Storage Capacity Using Conductive Polymer as a Pseudocapacitive Cathode for High-Energy and Flexible Lithium Ion Capacitors. ACS Applied Materials & Eamp; Interfaces, 2020, 12, 10479-10489.	8.0	57
84	Highly Crystalline Lithium Titanium Oxide Sheets Coated with Nitrogenâ€Doped Carbon enable Highâ€Rate Lithiumâ€Ion Batteries. ChemSusChem, 2014, 7, 2567-2574.	6.8	55
85	Electrospun Nâ€Doped Hierarchical Porous Carbon Nanofiber with Improved Degree of Graphitization for Highâ€Performance Lithium Ion Capacitor. Chemistry - A European Journal, 2018, 24, 10460-10467.	3.3	55
86	Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium-sulfur batteries. Carbon, 2019, 141, 16-24.	10.3	54
87	Suppression of interfacial reactions between Li4Ti5O12 electrode and electrolyte solution via zinc oxide coating. Electrochimica Acta, 2015, 157, 266-273.	5.2	51
88	Large Polarization of Li ₄ Ti ₅ O ₁₂ Lithiated to 0 V at Large Charge/Discharge Rates. ACS Applied Materials & Discharge Rates Rat	8.0	51
89	Carbon coated MoS2 nanosheets vertically grown on carbon cloth as efficient anode for high-performance sodium ion hybrid capacitors. Electrochimica Acta, 2018, 283, 36-44.	5.2	50
90	Understanding the cathode electrolyte interface formation in aqueous electrolyte by scanning electrochemical microscopy. Journal of Materials Chemistry A, 2019, 7, 12993-12996.	10.3	49

#	Article	IF	Citations
91	A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 13225-13233.	10.3	49
92	Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface. Journal of Materials Chemistry A, 2019, 7, 24857-24867.	10.3	48
93	Nanospace-confined formation of flattened Sn sheets in pre-seeded graphenes for lithium ion batteries. Nanoscale, 2014, 6, 9554-9558.	5.6	46
94	Increase and discretization of the energy barrier for individual LiNi _x Co _y Mn _y O ₂ (<i>x</i> + 2 <i>y</i> =1) particles with the growth of a Li ₂ CO ₃ surface film. Journal of Materials Chemistry A, 2019, 7, 12723-12731.	10.3	43
95	High-Energy and High-Power Nonaqueous Lithium-Ion Capacitors Based on Polypyrrole/Carbon Nanotube Composites as Pseudocapacitive Cathodes. ACS Applied Materials & Interfaces, 2019, 11, 15646-15655.	8.0	43
96	The different Li/Na ion storage mechanisms of nano Sb 2 O 3 anchored on graphene. Journal of Power Sources, 2018, 385, 114-121.	7.8	41
97	Basal Nanosuit of Graphite for High-Energy Hybrid Li Batteries. ACS Nano, 2020, 14, 1837-1845.	14.6	40
98	A Facile Surface Reconstruction Mechanism toward Better Electrochemical Performance of Li ₄ Ti ₅ O ₁₂ in Lithiumâ€lon Battery. Advanced Science, 2017, 4, 1700205.	11.2	37
99	Conductive Polyacrylic Acid-Polyaniline as a Multifunctional Binder for Stable Organic Quinone Electrodes of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 39630-39638.	8.0	37
100	Sodiophilically Graded Gold Coating on Carbon Skeletons for Highly Stable Sodium Metal Anodes. Small, 2020, 16, e2003815.	10.0	37
101	Restructured rimous copper foam as robust lithium host. Energy Storage Materials, 2020, 26, 250-259.	18.0	34
102	A Novel Lithiated Silicon–Sulfur Battery Exploiting an Optimized Solid‣ike Electrolyte to Enhance Safety and Cycle Life. Small, 2017, 13, 1602015.	10.0	33
103	Facile Synthesis of Antâ€Nestâ€Like Porous Duplex Copper as Deeply Cycling Host for Lithium Metal Anodes. Small, 2020, 16, e2001784.	10.0	33
104	Synthesis of Lithium Iron Phosphate/Carbon Microspheres by Using Polyacrylic Acid Coated Iron Phosphate Nanoparticles Derived from Iron(III) Acrylate. ChemSusChem, 2015, 8, 1009-1016.	6.8	31
105	A biscuit-like separator enabling high performance lithium batteries by continuous and protected releasing of NO3â^' in carbonate electrolyte. Energy Storage Materials, 2020, 24, 229-236.	18.0	31
106	Liâ€ion Reaction to Improve the Rate Performance of Nanoporous Anatase TiO ₂ Anodes. Energy Technology, 2013, 1, 668-674.	3.8	30
107	Micron-sized Spherical Si/C Hybrids Assembled via Water/Oil System for High-Performance Lithium Ion Battery. Electrochimica Acta, 2016, 211, 982-988.	5.2	30
108	Lowering the charge overpotential of Li ₂ S <i>via</i> the inductive effect of phenyl diselenide in Liâ€"S batteries. Chemical Communications, 2019, 55, 7655-7658.	4.1	30

#	Article	IF	Citations
109	In Situ Observation of Interface Evolution on a Graphite Anode by Scanning Electrochemical Microscopy. ACS Applied Materials & Interfaces, 2020, 12, 37047-37053.	8.0	30
110	Simultaneously Homogenized Electric Field and Ionic Flux for Reversible Ultrahigh-Areal-Capacity Li Deposition. Nano Letters, 2020, 20, 5662-5669.	9.1	29
111	Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries. Materials Today Physics, 2021, 21, 100486.	6.0	29
112	Abundant grain boundaries activate highly efficient lithium ion transportation in high rate Li4Ti5O12 compact microspheres. Journal of Materials Chemistry A, 2019, 7, 1168-1176.	10.3	28
113	Discovering a First-Order Phase Transition in the Li–CeO ₂ System. Nano Letters, 2017, 17, 1282-1288.	9.1	27
114	Different solid electrolyte interface and anode performance of CoCO3 microspheres due to graphene modification and LiCoO2 CoCO3@rGO full cell study. Electrochimica Acta, 2018, 270, 192-204.	5.2	27
115	Combination Effect of Bulk Structure Change and Surface Rearrangement on the Electrochemical Kinetics of LiNi _{0.80} Co _{0.15} Al _{0.05} O ₂ During Initial Charging Processes. ACS Applied Materials & During Interfaces, 2018, 10, 41370-41379.	8.0	27
116	Crystallized lithium titanate nanosheets prepared <i>via</i> spark plasma sintering for ultra-high rate lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 455-460.	10.3	26
117	The rise of metal–organic frameworks for electrolyte applications. Journal of Materials Chemistry A, 2021, 9, 20837-20856.	10.3	26
118	High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery. Journal of Power Sources, 2014, 268, 882-886.	7.8	25
119	Carbon coated porous tin peroxide/carbon composite electrode for lithium-ion batteries with excellent electrochemical properties. Carbon, 2015, 81, 739-747.	10.3	25
120	Rate-independent and ultra-stable low-temperature sodium storage in pseudocapacitive TiO ₂ nanowires. Journal of Materials Chemistry A, 2019, 7, 19297-19304.	10.3	25
121	An Efficient Synthetic Method to Prepare High-Performance Ni-rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ for Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 7403-7411.	5.1	25
122	Effect of Fluoroethylene Carbonate on Solid Electrolyte Interphase Formation of the SiO/C Anode Observed by In Situ Atomic Force Microscopy. ACS Applied Energy Materials, 2021, 4, 492-499.	5.1	25
123	Utilizing an autogenously protective atmosphere to synthesize a Prussian white cathode with ultrahigh capacity-retention for potassium-ion batteries. Chemical Communications, 2019, 55, 12555-12558.	4.1	24
124	Stabilizing sodium metal anode through facile construction of organic-metal interface. Journal of Energy Chemistry, 2022, 66, 133-139.	12.9	24
125	A Comparative Investigation of Single Crystal and Polycrystalline Niâ€Rich NCMs as Cathodes for Lithiumâ€lon Batteries. Energy and Environmental Materials, 2023, 6, .	12.8	23
126	Horizontal Stress Release for Protuberanceâ€Free Li Metal Anode. Advanced Functional Materials, 2020, 30, 2002522.	14.9	22

#	Article	IF	Citations
127	Impact of evolution of cathode electrolyte interface of Li(Ni0.8Co0.1Mn0.1)O2 on electrochemical performance during high voltage cycling process. Journal of Energy Chemistry, 2020, 47, 72-78.	12.9	20
128	Rational design of carbon nanotube architectures for lithium–chalcogen batteries: Advances and perspectives. Energy Storage Materials, 2021, 42, 723-752.	18.0	20
129	Promoting the reversibility of lithium ion/lithium metal hybrid graphite anode by regulating solid electrolyte interface. Nano Energy, 2021, 90, 106510.	16.0	20
130	Nanoscale observation of the solid electrolyte interface and lithium dendrite nucleation–growth process during the initial lithium electrodeposition. Journal of Materials Chemistry A, 2020, 8, 18348-18357.	10.3	19
131	Investigating the increased-capacity mechanism of porous carbon materials in lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 14031-14042.	10.3	18
132	A single-crystal nickel-rich material as a highly stable cathode for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 19680-19689.	10.3	18
133	Investigation of Interfacial Changes on Grain Boundaries of Li(Ni _{0.5} Co _{0.2} Mn _{0.3})O ₂ in the Initial Overcharge Process. Advanced Materials Interfaces, 2019, 6, 1801764.	3.7	17
134	In Situ Constructed Ionicâ€Electronic Dualâ€Conducting Scaffold with Reinforced Interface for Highâ€Performance Sodium Metal Anodes. Small, 2021, 17, e2104021.	10.0	17
135	Application of nano Al2O3 particles as precipitate nucleus for preparation of high rate nickel-rich cathode materials. Journal of Power Sources, 2019, 439, 227038.	7.8	15
136	Investigations on the Surface Degradation of LiNi _{$1/3$} O _{2} after Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 7378-7385.	6.7	15
137	Understanding the Conductive Carbon Additive on Electrode/Electrolyte Interface Formation in Lithium-lon Batteries via in situ Scanning Electrochemical Microscopy. Frontiers in Chemistry, 2020, 8, 114.	3.6	15
138	Application of Alternating Current Scanning Electrochemical Microscopy in Lithiumâ€lon Batteries: Local Visualization of the Electrode Surface. ChemElectroChem, 2019, 6, 4854-4858.	3.4	14
139	Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon, 2021, 185, 152-160.	10.3	14
140	A gradient screening approach for retired lithium-ion batteries based on X-ray computed tomography images. RSC Advances, 2020, 10, 19117-19123.	3.6	14
141	Synthesis design of interfacial nanostructure for nickel-rich layered cathodes. Nano Energy, 2022, 97, 107119.	16.0	14
142	Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials. Journal of Materials Science, 2020, 55, 9414-9424.	3.7	13
143	Ultrahigh capacity and cyclability of dual-phase TiO ₂ nanowires with low working potential at room and subzero temperatures. Journal of Materials Chemistry A, 2021, 9, 9256-9265.	10.3	13
144	A Conductive/Ferroelectric Hybrid Interlayer for Highly Improved Trapping of Polysulfides in Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2019, 6, 1900984.	3.7	12

#	Article	IF	CITATIONS
145	Identical cut-off voltage <i>versus</i> equivalent capacity: an objective evaluation of the impact of dopants in layered oxide cathodes. Journal of Materials Chemistry A, 2021, 9, 11219-11227.	10.3	12
146	A nanoscale interlayer void design enabling high-performance SnO2-carbon anodes. Carbon, 2021, 183, 486-494.	10.3	12
147	Lithium titanate hybridized with trace amount of graphene used as an anode for a high rate lithium ion battery. Electrochimica Acta, 2014, 142, 247-253.	5.2	11
148	Interfacial kinetics induced phase separation enhancing low-temperature performance of lithium-ion batteries. Nano Energy, 2020, 75, 104977.	16.0	11
149	Highly reversible lithium storage in a conversion-type ZnCo ₂ O ₄ anode promoted by NiCl _{2â^'x} F _x hydrate. Journal of Materials Chemistry A, 2020, 8, 2356-2363.	10.3	11
150	Transference Number Reinforced-Based Gel Copolymer Electrolyte for Dendrite-Free Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 26612-26621.	8.0	11
151	Gradient Structure Design of a Floatable Host for Preferential Lithium Deposition. Nano Letters, 2021, 21, 10252-10259.	9.1	10
152	Sacrificial Poly(propylene carbonate) Membrane for Dispersing Nanoparticles and Preparing Artificial Solid Electrolyte Interphase on Li Metal Anode. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27087-27094.	8.0	8
153	Heterogeneous Degradation in Thick Nickelâ€Rich Cathodes During Highâ€Temperature Storage and Mitigation of Thermal Instability by Regulating Cationic Disordering. Small, 2021, 17, e2102055.	10.0	8
154	sp–sp ² hybrid-conjugated microporous polymer-derived Pd-encapsulated porous carbon materials for lithium–sulfur batteries. Chemical Communications, 2019, 55, 10084-10087.	4.1	6
155	Synthesis design of a 3D interfacial structure for highly reversible lithium deposition. Journal of Materials Chemistry A, 2021, 9, 25004-25012.	10.3	6
156	Multi-functional modification of nickel-rich lithium cathode materials using Na ₂ PO ₃ F. Journal of Materials Chemistry A, 2022, 10, 11437-11448.	10.3	4
157	A green water-induced spinel heterostructure interface enabling high performance lithium and manganese rich oxides. Journal of Materials Chemistry A, 2021, 9, 20576-20584.	10.3	3