Deborah M Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4569048/publications.pdf

Version: 2024-02-01

43 papers

2,732 citations

236925 25 h-index 254184 43 g-index

43 all docs

43 docs citations

times ranked

43

3998 citing authors

#	Article	IF	CITATIONS
1	High†and lowâ€molecularâ€weight chitosan act as adjuvants during singleâ€dose influenza A virus protein vaccination through distinct mechanisms. Biotechnology and Bioengineering, 2021, 118, 1224-1243.	3.3	14
2	Analysis of Student Perceptions of Just-In-Time Teaching Pedagogy in PharmD Microbiology and Immunology Courses. Frontiers in Immunology, 2020, 11, 351.	4.8	5
3	Combined TLR4 and TLR9 agonists induce distinct phenotypic changes in innate immunity in vitro and in vivo. Cellular Immunology, 2020, 355, 104149.	3.0	8
4	A Mechanistic Computational Model Reveals That Plasticity of CD4+ T Cell Differentiation Is a Function of Cytokine Composition and Dosage. Frontiers in Physiology, 2018, 9, 878.	2.8	46
5	Pleiotropic Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted Mutation of the <i>Csf1r</i> Locus. Journal of Immunology, 2018, 201, 2683-2699.	0.8	114
6	Oral non-viral gene delivery for applications in DNA vaccination and gene therapy. Current Opinion in Biomedical Engineering, 2018, 7, 51-57.	3.4	15
7	Chitosan-zein nano-in-microparticles capable of mediating in vivo transgene expression following oral delivery. Journal of Controlled Release, 2017, 249, 150-161.	9.9	54
8	Activation of IRF3 contributes to IFN-γ and ISG54 expression during the immune responses to B16F10 tumor growth. International Immunopharmacology, 2017, 50, 121-129.	3.8	19
9	The Differentiation and Protective Function of Cytolytic CD4 T Cells in Influenza Infection. Frontiers in Immunology, 2016, 7, 93.	4.8	55
10	Micro- and nanoparticulates for DNA vaccine delivery. Experimental Biology and Medicine, 2016, 241, 919-929.	2.4	68
11	Significant role for IRF3 in both T cell and APC effector functions during T cell responses. Cellular Immunology, 2016, 310, 141-149.	3.0	19
12	Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Frontiers in Immunology, 2015, 6, 327.	4.8	11
13	IRF3 deficiency impacts granzyme B expression and maintenance of memory T cell function in response to viral infection. Microbes and Infection, 2015, 17, 426-439.	1.9	11
14	Inflammation Enhances IL-2 Driven Differentiation of Cytolytic CD4 T Cells. PLoS ONE, 2014, 9, e89010.	2.5	38
15	Interferon response factor 3 is crucial to poly-I:C induced NK cell activity and control of B16 melanoma growth. Cancer Letters, 2014, 346, 122-128.	7.2	18
16	Early Cytokine Dysregulation and Viral Replication Are Associated with Mortality During Lethal Influenza Infection. Viral Immunology, 2014, 27, 214-224.	1.3	37
17	IRF3 helps control acute TMEV infection through IL-6 expression but contributes to acute hippocampus damage following TMEV infection. Virus Research, 2013, 178, 226-233.	2.2	20
18	Control of Early Theiler's Murine Encephalomyelitis Virus Replication in Macrophages by Interleukin-6 Occurs in Conjunction with STAT1 Activation and Nitric Oxide Production. Journal of Virology, 2012, 86, 10841-10851.	3.4	26

#	Article	IF	CITATIONS
19	Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-α-reactive CD4 T cells in A/J mice. Clinical Immunology, 2012, 144, 237-249.	3.2	68
20	Multifunctional CD4 Cells Expressing Gamma Interferon and Perforin Mediate Protection against Lethal Influenza Virus Infection. Journal of Virology, 2012, 86, 6792-6803.	3.4	214
21	Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. Journal of Clinical Investigation, 2012, 122, 2847-2856.	8.2	195
22	IRF3 polymorphisms induce different innate anti-Theiler's virus immune responses in RAW264.7 macrophages. Virology, 2011, 418, 40-48.	2.4	16
23	Cytolytic CD4 cells: Direct mediators in infectious disease and malignancy. Cellular Immunology, 2010, 262, 89-95.	3.0	155
24	IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells. Cellular Immunology, 2009, 257, 69-79.	3.0	99
25	Unique Ability of Activated CD4+ T Cells but Not Rested Effectors to Migrate to Non-lymphoid Sites in the Absence of Inflammation. Journal of Biological Chemistry, 2007, 282, 6106-6115.	3.4	29
26	Persistent Depots of Influenza Antigen Fail To Induce a Cytotoxic CD8 T Cell Response. Journal of Immunology, 2007, 178, 7563-7570.	0.8	67
27	Uneven distribution of MHC class II epitopes within the influenza virus. Vaccine, 2006, 24, 457-467.	3.8	75
28	CD4 + Tâ€cell memory: generation and multiâ€faceted roles for CD4 + T cells in protective immunity to influenza. Immunological Reviews, 2006, 211, 8-22.	6.0	154
29	CD4 T Cell-Mediated Protection from Lethal Influenza: Perforin and Antibody-Mediated Mechanisms Give a One-Two Punch. Journal of Immunology, 2006, 177, 2888-2898.	0.8	254
30	Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. Journal of Experimental Medicine, 2005, 202, 697-706.	8.5	226
31	CD8+ T cells responding to influenza infection reach and persist at higher numbers than CD4+ T cells independently of precursor frequency. Clinical Immunology, 2004, 113, 89-100.	3.2	33
32	CD4 T cell responses to influenza infection. Seminars in Immunology, 2004, 16, 171-177.	5.6	145
33	Generation of monoclonal antibodies specific for human kallikrein 2 (hK2) using hK2-expressing tumors. Prostate, 2002, 51, 153-165.	2.3	4
34	Regulation of memory CD4 T cells: generation, localization and persistence. Advances in Experimental Medicine and Biology, 2002, 512, 113-20.	1.6	16
35	Tumours can act as adjuvants for humoral immunity. Immunology, 2001, 102, 486-497.	4.4	73
36	Human Papillomavirus Virus-Like Particles Are Efficient Oral Immunogens when Coadministered with Escherichia coli Heat-Labile Enterotoxin Mutant R192G or CpG DNA. Journal of Virology, 2001, 75, 4752-4760.	3.4	82

#	Article	IF	CITATIONS
37	Antibody Cross-Linking of the Thymocyte-Specific Cell Surface Molecule CTX Causes Abnormal Mitosis and Multinucleation of Tumor Cells. Experimental Cell Research, 1997, 235, 227-237.	2.6	10
38	PGE2 Regulation of B Lymphocytes and T Helper 1 and T Helper 2 Cells: Induction of Inflammatory versus Allergic Responses. Advances in Experimental Medicine and Biology, 1997, 407, 237-242.	1.6	18
39	A molecular analysis of PGE receptor (EP) expression on normal and transformed B lymphocytes: Coexpression of EP1, EP2, EP3β and EP4. Molecular Immunology, 1996, 33, 33-45.	2.2	61
40	Characterization and Regulation of Prostaglandin E2 Receptors on Normal and Malignant Murine B Lymphocytes. Cellular Immunology, 1995, 161, 79-87.	3.0	24
41	Regulation of B Cell Tolerance and Triggering by Immune Complexes. Chemical Immunology and Allergy, 1994, 58, 67-91.	1.7	3
42	Prostaglandin E2 induces apoptosis in immature normal and malignant B lymphocytes. Clinical Immunology and Immunopathology, 1992, 63, 221-229.	2.0	77
43	Differential expression of interleukin 1α by Thy-1+ and Thy-1â^' lung fibroblast subpopulations: Enhancement of interleukin 1α production by tumor necrosis factor-α. European Journal of Immunology, 1990, 20, 1723-1727.	2.9	56