Frank D Sönnichsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4568850/publications.pdf

Version: 2024-02-01

147 papers 7,217 citations

45 h-index 80 g-index

151 all docs

151 docs citations

151 times ranked

7603 citing authors

#	Article	IF	Citations
1	Insights into the leaves of Ceriscoides campanulata: Natural proanthocyanidins alleviate diabetes, inflammation, and esophageal squamous cell cancer via in vitro and in silico models. Fìtoterapìâ, 2022, 158, 105164.	2.2	3
2	Catalytic Hydrogenation of Trivinyl Orthoacetate: Mechanisms Elucidated by Parahydrogen Induced Polarization. ChemPhysChem, 2021, 22, 370-377.	2.1	4
3	Cytotoxic constituents and a new hydroxycinnamic acid derivative from Leontodon saxatilis (Asteraceae, Cichorieae). RSC Advances, 2021, 11, 10489-10496.	3.6	4
4	Occurrence of Fusarium Mycotoxins and Their Modified Forms in Forage Maize Cultivars. Toxins, 2021, 13, 110.	3.4	30
5	Metalâ€Dependent and Selective Crystallization of CAUâ€10 and MILâ€53 Frameworks through Linker Nitration. Chemistry - A European Journal, 2021, 27, 7696-7703.	3.3	O
6	Towards Photoswitchable Contrast Agents for Absolute 3D Temperature MR Imaging. Angewandte Chemie, 2021, 133, 8301-8307.	2.0	1
7	Towards Photoswitchable Contrast Agents for Absolute 3D Temperature MR Imaging. Angewandte Chemie - International Edition, 2021, 60, 8220-8226.	13.8	13
8	Bioactive Abietane-Type Diterpenoid Glycosides from Leaves of Clerodendrum infortunatum (Lamiaceae). Molecules, 2021, 26, 4121.	3.8	5
9	Designed Trp-Cage Proteins with Antimicrobial Activity and Enhanced Stability. Biochemistry, 2021, 60, 3187-3199.	2.5	2
10	Effect of ensiling duration on the fate of deoxynivalenol, zearalenone and their derivatives in maize silage. Mycotoxin Research, 2020, 36, 127-136.	2.3	12
11	Efficient reversible photoisomerisation with large solvodynamic size-switching of a main chain poly(azobenzene- <i>alt</i> -trisiloxane). Journal of Materials Chemistry C, 2020, 8, 1835-1845.	5.5	9
12	Sesquiterpene lactones from Sonchus palustris L. (Asteraceae, Cichorieae). Phytochemistry, 2020, 170, 112196.	2.9	4
13	Continuous Radio Amplification by Stimulated Emission of Radiation using Parahydrogen Induced Polarization (PHIPâ€RASER) at 14 Tesla. ChemPhysChem, 2020, 21, 667-672.	2.1	25
14	A Paramagnetic NMR Spectroscopy Toolbox for the Characterisation of Paramagnetic/Spin rossover Coordination Complexes and Metal–Organic Cages. Angewandte Chemie - International Edition, 2020, 59, 19344-19351.	13.8	27
15	Visible-light-driven photocontrol of the Trp-cage protein fold by a diazocine cross-linker. Organic and Biomolecular Chemistry, 2020, 18, 2650-2660.	2.8	17
16	In vitro singlet state and zero-quantum encoded magnetic resonance spectroscopy: Illustration with N-acetyl-aspartate. PLoS ONE, 2020, 15, e0239982.	2.5	6
17	Negishi's Reagent Versus Rosenthal's Reagent in the Formation of Zirconacyclopentadienes. Chemistry - A European Journal, 2019, 25, 13318-13328.	3.3	24
18	Nitrogen Bridged Diazocines: Photochromes Switching within the Near-Infrared Region with High Quantum Yields in Organic Solvents and in Water. Journal of the American Chemical Society, 2019, 141, 13592-13600.	13.7	101

#	Article	IF	CITATIONS
19	Evaluation of High-Resolution Mass Spectrometry for the Quantitative Analysis of Mycotoxins in Complex Feed Matrices. Toxins, 2019, 11, 531.	3.4	19
20	Different Secondary Metabolite Profiles of Phylogenetically almost Identical Streptomyces griseus Strains Originating from Geographically Remote Locations. Microorganisms, 2019, 7, 166.	3.6	25
21	Towards a light driven molecular assembler. Communications Chemistry, 2019, 2, .	4.5	19
22	Antitumor Anthraquinones from an Easter Island Sea Anemone: Animal or Bacterial Origin?. Marine Drugs, 2019, 17, 154.	4.6	14
23	Spin Switching with Triazolate-Strapped Ferrous Porphyrins. Inorganic Chemistry, 2019, 58, 5265-5272.	4.0	15
24	Longâ€Distance Rate Acceleration by Bulk Gold. Angewandte Chemie, 2019, 131, 6646-6650.	2.0	8
25	Longâ€Distance Rate Acceleration by Bulk Gold. Angewandte Chemie - International Edition, 2019, 58, 6574-6578.	13.8	25
26	Conjugated oligomers with alternating heterocycles from a single monomer: synthesis and demonstration of electroluminescence. Organic Chemistry Frontiers, 2019, 6, 3636-3643.	4.5	1
27	Light-controlled switching of the spin state of iron(III). Nature Communications, 2018, 9, 4750.	12.8	51
28	OnlyParahydrogen SpectrosopY (OPSY) pulse sequences – One does not fit all. Journal of Magnetic Resonance, 2018, 297, 86-95.	2.1	8
29	Resolving the excited state relaxation dynamics of guanosine monomers and hydrogen-bonded homodimers in chloroform solution. Chemical Physics, 2018, 515, 480-492.	1.9	2
30	High molecular weight poly(N-methyl-B-vinylazaborine) – a semi-inorganic B–N polystyrene analogue. Chemical Communications, 2017, 53, 7258-7261.	4.1	56
31	Identification of rosmarinic acid and sulfated flavonoids as inhibitors of microfouling on the surface of eelgrass <i>Zostera marina Ioanno de la companya de la co</i>	2.2	31
32	Diversely halogenated spiropyrans - Useful synthetic building blocks for a versatile class of molecular switches. Dyes and Pigments, 2017, 136, 292-301.	3.7	39
33	The Entner–Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5441-5446.	7.1	160
34	Phosphatidylserine exposure is required for ADAM17 sheddase function. Nature Communications, 2016, 7, 11523.	12.8	134
35	The solution structure of the kallikrein-related peptidases inhibitor SPINK6. Biochemical and Biophysical Research Communications, 2016, 471, 103-108.	2.1	7
36	High‥ield Lithiation of Azobenzenes by Tin–Lithium Exchange. Chemistry - A European Journal, 2015, 21, 11165-11173.	3.3	17

#	Article	IF	CITATIONS
37	Synthesis of Bifunctional Azobenzene Glycoconjugates for Cysteineâ€Based Photosensitive Crossâ€Linking with Bioactive Peptides. Chemistry - A European Journal, 2015, 21, 13723-13731.	3.3	28
38	Two thiazolylindoles and a benzimidazole: Novel compounds on the designer drug market with potential cannabinoid receptor activity. Forensic Science International, 2015, 249, 133-147.	2.2	10
39	Partitioning of nitroxides in dispersed systems investigated by ultrafiltration, EPR and NMR spectroscopy. Journal of Colloid and Interface Science, 2015, 452, 15-23.	9.4	11
40	Solution structure and functional studies of the highly potent equine antimicrobial peptide DEFA1. Biochemical and Biophysical Research Communications, 2015, 459, 668-672.	2.1	2
41	Photoswitchable Magnetic Resonance Imaging Contrast by Improved Light-Driven Coordination-Induced Spin State Switch. Journal of the American Chemical Society, 2015, 137, 7552-7555.	13.7	110
42	Rational design of a room temperature molecular spin switch. The light-driven coordination induced spin state switch (LD-CISSS) approach. Dalton Transactions, 2014, 43, 17395-17405.	3.3	66
43	Synthesis and Photochromic Properties of Configurationally Varied Azobenzene Glycosides. ChemistryOpen, 2014, 3, 99-108.	1.9	19
44	Hidden Flexibility of Strychnine. European Journal of Organic Chemistry, 2014, 2014, 1147-1150.	2.4	17
45	Formation of solid bituminous matter in pegmatites: Constraints from experimentally formed organic matter on microporous silicate minerals. Chemie Der Erde, 2014, 74, 343-351.	2.0	3
46	Molybdenum(0)–carbonyl complexes supported by mixed benzimidazol-2-ylidene/phosphine ligands: Influence of benzannulation on the donor properties of the NHC groups. Journal of Organometallic Chemistry, 2014, 770, 61-68.	1.8	17
47	Differences in heat stability and ligand binding among \hat{I}^2 -lactoglobulin genetic variants A, B and C using 1H NMR and fluorescence quenching. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1083-1093.	2.3	50
48	Characterization and Function of the First Antibiotic Isolated from a Vent Organism: The Extremophile Metazoan Alvinella pompejana. PLoS ONE, 2014, 9, e95737.	2.5	36
49	Therapeutic Potential of the Peptide Leucine Arginine As a New Nonplant Bowman–Birk-Like Serine Protease Inhibitor. Journal of Medicinal Chemistry, 2013, 56, 6732-6744.	6.4	16
50	Ultrafast electronic deactivation dynamics of the inosine dimer – a model case for H-bonded purine bases. Photochemical and Photobiological Sciences, 2013, 12, 1466.	2.9	2
51	Photochemical properties of multi-azobenzene compounds. Photochemical and Photobiological Sciences, 2013, 12, 511-518.	2.9	45
52	Structure and function of a unique pore-forming protein from a pathogenic acanthamoeba. Nature Chemical Biology, 2013, 9, 37-42.	8.0	36
53	The Quiet Renaissance of Protein Nuclear Magnetic Resonance. Biochemistry, 2013, 52, 1303-1320.	2.5	45
54	Thermodynamic Stabilization of the Folded Domain of Prion Protein Inhibits Prion Infection inÂVivo. Cell Reports, 2013, 4, 248-254.	6.4	28

#	Article	IF	CITATIONS
55	Smallâ€Molecule Activation with Molybdenum(0) Complexes Supported by Mixed Imidazolâ€2â€Ylidene/Phosphanyl Hybrid Ligands â€" Electronic and Structural Consequences of Substituting a Phosphane by a Carbene Group. European Journal of Inorganic Chemistry, 2013, 2013, 3943-3955.	2.0	17
56	Membrane-Proximal Domain of a Disintegrin and Metalloprotease-17 Represents the Putative Molecular Switch of Its Shedding Activity Operated by Protein-disulfide Isomerase. Journal of the American Chemical Society, 2013, 135, 5776-5781.	13.7	75
57	Macin Family of Antimicrobial Proteins Combines Antimicrobial and Nerve Repair Activities. Journal of Biological Chemistry, 2012, 287, 14246-14258.	3.4	41
58	Identification of structural traits that increase the antimicrobial activity of a chimeric peptide of human \hat{l}^2 -defensins 2 and 3. Biochemical and Biophysical Research Communications, 2012, 427, 207-211.	2.1	10
59	Thermodynamic and kinetic stabilization of divanadate in the monovanadate/divanadate equilibrium using a Zn-cyclene derivative: Towards a simple ATP synthase model. Beilstein Journal of Organic Chemistry, 2012, 8, 81-89.	2.2	2
60	Fe ^{III} Spinâ€Crossover Complexes with Photoisomerizable Ligands: Experimental and Theoretical Studies on the Ligandâ€Driven Lightâ€Induced Spin Change Effect. European Journal of Inorganic Chemistry, 2012, 2012, 2776-2783.	2.0	66
61	Identification of 1-butyl-3-(1-(4-methyl)naphthoyl)indole in a herbal mixture. Forensic Science International, 2012, 215, 8-13.	2.2	41
62	Photodimerisation of glycothymidines in solution and in micelles. Chemical Communications, 2011, 47, 9399.	4.1	6
63	Magnetic Bistability of Molecules in Homogeneous Solution at Room Temperature. Science, 2011, 331, 445-448.	12.6	489
64	Seized designer supplement named "1-Androsterone― Identification as 3β-hydroxy-5α-androst-1-en-17-one and its urinary elimination. Steroids, 2011, 76, 540-547.	1.8	30
65	Photochromism of Rotationâ€Hindered Furylfulgides Influenced by Steric Modifications. European Journal of Organic Chemistry, 2011, 2011, 1947-1955.	2.4	26
66	New insights into the antioxidant activity of Trolox in o/w emulsions. Food Chemistry, 2011, 124, 781-787.	8.2	15
67	Singly and Doubly Twisted [36]Annulenes: Synthesis and Calculations. Chemistry - A European Journal, 2010, 16, 7767-7772.	3.3	22
68	Coordinationâ€Induced Spin Crossover (CISCO) through Axial Bonding of Substituted Pyridines to Nickel–Porphyrins: σâ€Donor versus Ï€â€Acceptor Effects. Chemistry - A European Journal, 2010, 16, 10074-10083.	3.3	106
69	New polyphenolic compounds in commercial deodistillate and rapeseed oils. Food Chemistry, 2010, 123, 607-615.	8.2	64
70	The first supramolecular ion triplet complex. New Journal of Chemistry, 2010, 34, 1247.	2.8	28
71	Solution Nuclear Magnetic Resonance Structure of Membrane-Integral Diacylglycerol Kinase. Science, 2009, 324, 1726-1729.	12.6	205
72	Mass and NMR spectroscopic characterization of 3,4-methylenedioxypyrovalerone: A designer drug with α-pyrrolidinophenone structure. Forensic Science International, 2009, 190, 1-8.	2.2	78

#	Article	IF	CITATIONS
73	Parallel ultrafast E–C ring closure and E–Z isomerisation in a photochromic furylfulgide studied by femtosecond time-resolved spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 5952.	2.8	35
74	NMR based structure and enzymatic insight into diacylglycerol kinase, an alphaâ€helical membrane protein. FASEB Journal, 2009, 23, LB223.	0.5	O
75	Synthesis of glycocluster peptides. Carbohydrate Research, 2008, 343, 1665-1674.	2.3	22
76	Structure of KCNE1 and Implications for How It Modulates the KCNQ1 Potassium Channel. Biochemistry, 2008, 47, 7999-8006.	2.5	183
77	Two Domains of RD3 Antifreeze Protein Diffuse Independently. Biochemistry, 2008, 47, 5935-5941.	2.5	9
78	Specificity Determinants of a Novel Nck Interaction with the Juxtamembrane Domain of the Epidermal Growth Factor Receptor,. Biochemistry, 2008, 47, 3096-3108.	2.5	24
79	Entry to " <mml:math altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>HCO</mml:mtext></mml:mrow><mm Tunnel―Revealed by SLC4A4 Human Mutation and Structural Model. Journal of Biological Chemistry, 2008. 283. 18402-18410.</mm </mml:msubsup></mml:mrow></mml:math>	l:mtext>3	
80	Molecular architecture of human prion protein amyloid: A parallel, in-register \hat{l}^2 -structure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18946-18951.	7.1	302
81	Adenovirus RIDα regulates endosome maturation by mimicking GTP-Rab7. Journal of Cell Biology, 2007, 179, 965-980.	5.2	23
82	Activity of a Two-Domain Antifreeze Protein Is Not Dependent on Linker Sequence. Biophysical Journal, 2007, 92, 541-546.	0.5	11
83	A Structure for Little Orphan Diacylglycerol Kinase. FASEB Journal, 2007, 21, A148.	0.5	O
84	Comprehensive evaluation of solution nuclear magnetic resonance spectroscopy sample preparation for helical integral membrane proteins. Journal of Structural and Functional Genomics, 2006, 7, 51-64.	1.2	77
85	Solution NMR of membrane proteins: practice and challenges. Magnetic Resonance in Chemistry, 2006, 44, S24-S40.	1.9	210
86	A Structural Model for the Membrane-bound Form of the Juxtamembrane Domain of the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 2005, 280, 24043-24052.	3.4	41
87	A novel dileucine lysosomal-sorting-signal mediates intracellular EGF-receptor retention independently of protein ubiquitylation. Journal of Cell Science, 2005, 118, 3959-3971.	2.0	23
88	Membrane Protein Preparation for TROSY NMR Screening. Methods in Enzymology, 2005, 394, 321-334.	1.0	35
89	Aqueous and Micelle-bound Structural Characterization of the Epidermal Growth Factor Receptor Juxtamembrane Domain Containing Basolateral Sorting Motifs. Journal of Biomolecular Structure and Dynamics, 2004, 21, 813-826.	3.5	5
90	Transcarboxylase: One of Nature's Early Nanomachines. IUBMB Life, 2004, 56, 575-583.	3.4	9

#	Article	IF	Citations
91	The α-Helical Peptide Nucleic Acid Concept: Merger of Peptide Secondary Structure and Codified Nucleic Acid Recognition. Journal of the American Chemical Society, 2004, 126, 4626-4640.	13.7	37
92	NMR Assignments for a Helical 40 kDa Membrane Protein. Journal of the American Chemical Society, 2004, 126, 5048-5049.	13.7	86
93	Topology and Secondary Structure of the N-Terminal Domain of Diacylglycerol Kinaseâ€. Biochemistry, 2002, 41, 12876-12882.	2.5	49
94	Characterization of the Carboxylate Delivery Module of Transcarboxylase: Following Spontaneous Decarboxylation of the 1.3S-CO2-Subunit by NMR and FTIR Spectroscopiesâ€. Biochemistry, 2002, 41, 2191-2197.	2.5	2
95	Intramolecular Quenching of Tryptophan Fluorescence by the Peptide Bond in Cyclic Hexapeptides. Journal of the American Chemical Society, 2002, 124, 9278-9286.	13.7	141
96	Unexpected Advanced Generation Cephalosporinase Activity of the M69F Variant of SHV \hat{I}^2 -Lactamase. Journal of Biological Chemistry, 2002, 277, 47719-47723.	3.4	37
97	The Structure of Fish Antifreeze Proteins. Molecular Aspects of Fish and Marine Biology, 2002, , 109-138.	0.2	4
98	A new paradigm for fish antifreeze protein binding to ice. , 2002, , 747-748.		0
99	Hydrogen bond analysis of Type 1 antifreeze protein in water and the ice/water interface. PhysChemComm, 2001, 4, 32-36.	0.8	17
100	Conformationally Specific Misfolding of an Integral Membrane Proteinâ€. Biochemistry, 2001, 40, 5111-5118.	2.5	24
101	Solution Structure of the E200K Variant of Human Prion Protein. Journal of Biological Chemistry, 2000, 275, 33650-33654.	3.4	120
102	High Resolution Solution Structure of the 1.3S Subunit of Transcarboxylase from Propionibacterium shermaniiâ€. Biochemistry, 2000, 39, 2509-2516.	2.5	55
103	Source of the Ice-Binding Specificity of Antifreeze Protein Type I. Journal of Chemical Information and Computer Sciences, 2000, 40, 1276-1284.	2.8	36
104	The Heme Complex of Hmu O, a Bacterial Heme Degradation Enzyme from Corynebacterium diphtheriae. Journal of Biological Chemistry, 1999, 274, 24490-24496.	3.4	45
105	A new class of hexahelical insect proteins revealed as putative carriers of small hydrophobic ligands. Structure, 1999, 7, 1325-1332.	3.3	51
106	N-type calcium channel/syntaxin/snap-25 complex probed by antibodies to II–III intracellular loop of the α1B subunit. Neuroscience, 1999, 90, 665-676.	2.3	11
107	Alternative Roles for Putative Ice-Binding Residues in Type I Antifreeze Proteinâ€. Biochemistry, 1999, 38, 4743-4749.	2.5	43
108	On choosing a detergent for solution NMR studies of membrane proteins. Journal of Biomolecular NMR, 1998, 11, 381-386.	2.8	107

#	Article	IF	CITATIONS
109	CAMRA: chemical shift based computer aided protein NMR assignments. Journal of Biomolecular NMR, 1998, 12, 395-405.	2.8	46
110	Structural characterization of the entire 1.3S subunit of transcarboxylase from <i>Propionibacterium shermanii</i> . Protein Science, 1998, 7, 2156-2163.	7.6	24
111	Les protéines antigel. Biofutur, 1998, 1998, 52.	0.0	2
112	The Ice-Binding Site of Sea Raven Antifreeze Protein Is Distinct from the Carbohydrate-Binding Site of the Homologous C-Type Lectinâ€. Biochemistry, 1998, 37, 17745-17753.	2.5	41
113	The Solution Structure of Type II Antifreeze Protein Reveals a New Member of the Lectin Family. Biochemistry, 1998, 37, 4712-4721.	2.5	125
114	NMR structural studies on antifreeze proteins. Biochemistry and Cell Biology, 1998, 76, 284-293.	2.0	17
115	A Membrane Setting for the Sorting Motifs Present in the Adenovirus E3-13.7 Protein Which Down-regulates the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 1998, 273, 17343-17350.	3.4	17
116	Binding of an Oligopeptide to a Specific Plane of Ice. Journal of Biological Chemistry, 1998, 273, 11714-11718.	3.4	67
117	Assignment of the helical structure in neuropeptide Y by HPLC studies of methionine replacement analogues and 1H-NMR spectroscopy. Biopolymers, 1998, 39, 207-219.	2.4	3
118	NMR structural studies on antifreeze proteins. Biochemistry and Cell Biology, 1998, 76, 284-293.	2.0	12
119	Backbone Structure and Dynamics of a Hemolymph Protein from the Mealworm BeetleTenebrio molitorâ€. Biochemistry, 1997, 36, 13791-13801.	2.5	14
120	Absence of Observable Biotinâ^'Protein Interactions in the 1.3S Subunit of Transcarboxylase: An NMR Studyâ€. Biochemistry, 1997, 36, 14676-14682.	2.5	18
121	A Diminished Role for Hydrogen Bonds in Antifreeze Protein Binding to Iceâ€. Biochemistry, 1997, 36, 14652-14660.	2.5	204
122	Modeling Studies of Binding of Sea Raven Type II Antifreeze Protein to Ice. Journal of Chemical Information and Computer Sciences, 1997, 37, 1006-1010.	2.8	30
123	Purification, Characterization, and Structural Analysis of a Plant Low-Temperature-Induced Protein. Plant Physiology, 1997, 113, 367-376.	4.8	31
124	ORB, a homology-based program for the prediction of protein NMR chemical shifts. Journal of Biomolecular NMR, 1997, 10, 165-179.	2.8	18
125	NMR Characterization of Side Chain Flexibility and Backbone Structure in the Type I Antifreeze Protein at Near Freezing Temperaturesâ€. Biochemistry, 1996, 35, 16698-16704.	2.5	56
126	Interhelical Salt Bridges, Coiled-Coil Stability, and Specificity of Dimerization. Science, 1996, 271, 1136-1138.	12.6	85

#	Article	IF	CITATIONS
127	The dynamics and binding of a Type III antifreeze protein in water and on ice. Computational and Theoretical Chemistry, 1996, 388, 65-77.	1.5	15
128	Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein–ice interaction. Structure, 1996, 4, 1325-1337.	3.3	177
129	The Role of Transient Changes in Sample Susceptibility in Causing Apparent Multiple-Quantum Peaks in HOESY Spectra. Journal of Magnetic Resonance Series A, 1996, 121, 83-87.	1.6	39
130	Temperature coefficients of amide proton NMR resonance frequencies in trifluoroethanol: A monitor of intramolecular hydrogen bonds in helical peptides?. Journal of Biomolecular NMR, 1996, 8, 93-97.	2.8	53
131	The relative positions of alanine residues in the hydrophobic core control the formation of two-stranded or four-stranded α-helical coiled-coils. Protein Engineering, Design and Selection, 1996, 9, 353-363.	2.1	39
132	On the Use of NMR in Complex Biological Systems: NMR Studies of Calcium Sensitive Interactions amongst Muscle Proteins. , 1996, , 275-284.		0
133	Comparison of the solution structures of microcystin-LR and motuporin. Nature Structural and Molecular Biology, 1995, 2, 114-116.	8.2	49
134	Structure Effects of Double D-Amino Acid Replacements: A Nuclear Magnetic Resonance and Circular Dichroism Study Using Amphipathic Model Helixes. Biochemistry, 1995, 34, 12954-12962.	2.5	73
135	Preferential Heterodimeric Parallel Coiled-coil Formation by Synthetic Max and c-Myc Leucine Zippers: A Description of Putative Electrostatic Interactions Responsible for the Specificity of Heterodimerization. Journal of Molecular Biology, 1995, 254, 505-520.	4.2	106
136	Comparative modeling of the threeâ€dimensional structure of Type II antifreeze protein. Protein Science, 1995, 4, 460-471.	7.6	45
137	Structureâ€function relationship in the globular type III antifreeze protein: Identification of a cluster of surface residues required for binding to ice. Protein Science, 1994, 3, 1760-1769.	7.6	119
138	Reversed-phase chromatography of synthetic amphipathic α-helical peptides as a model for ligand/receptor interactions Effect of changing hydrophobic environment on the relative hydrophilicity/hydrophobicity of amino acid side-chains. Journal of Chromatography A, 1994, 676, 139-153.	3.7	99
139	Use of proline mutants to help solve the NMR solution structure of type III antifreeze protein. Protein Science, 1993, 2, 1411-1428.	7.6	54
140	A new stereoselective approach to the trans-perhydroazulene skeleton. Tetrahedron: Asymmetry, 1993, 4, 281-284.	1.8	7
141	NMR solution structure and flexibility of a peptide antigen representing the receptor binding domain of Pseudomonas aeruginosa. Biochemistry, 1993, 32, 13432-13440.	2.5	35
142	The nonhelical structure of antifreeze protein type III. Science, 1993, 259, 1154-1157.	12.6	111
143	Evaluation of NMR Based Structure Determination of Flexible Peptides: Application to Desmopressin. , 1993, , 569-575.		3
144	Überbrückte verzweigte desoxy-methylfuranoside aus 3,6-hexanooxepinen. Tetrahedron Letters, 1992, 33, 8023-8026.	1.4	6

#	Article	IF	CITATIONS
145	Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry, 1992, 31, 8790-8798.	2.5	638
146	Synthese mittlerer und groÄŸer Ringe, XXIII. Photochemische Umlagerung von 3,6â€Alkanooxepinâ€4,5â€dicarbonsĤreestern. Chemische Berichte, 1989, 122, 199-207.	0.2	13
147	Synthese mittlerer und großer Ringe, XXV: Synthese funktionalisierter <i>trans</i> å€Hydrindane mit angularer αâ€Ketoestergruppe. Chemische Berichte, 1989, 122, 1969-1975.	0.2	10