

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4568812/publications.pdf Version: 2024-02-01

Χάδι Χιά

#	Article	IF	CITATIONS
1	Secure direct communication based on secret transmitting order of particles. Physical Review A, 2006, 73, .	2.5	258
2	Multiparty remote state preparation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 3719-3724.	1.5	199
3	Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Physical Review A, 2014, 89, .	2.5	132
4	Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Physical Review A, 2015, 91, .	2.5	124
5	Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Physical Review A, 2014, 89, .	2.5	116
6	Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 364, 117-122.	2.1	107
7	Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Physical Review A, 2016, 93, .	2.5	93
8	Joint remote state preparation of a W-type state via W-type states. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4483-4487.	2.1	79
9	Fast preparation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>W</mml:mi> states with superconducting quantum interference devices by using dressed states. Physical Review A, 2016, 94, .</mml:math 	2.5	77
10	Phase transition enhanced superior elasticity in freestanding single-crystalline multiferroic BiFeO ₃ membranes. Science Advances, 2020, 6, .	10.3	73
11	Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Optics Communications, 2011, 284, 2617-2621.	2.1	72
12	Linear optical protocol for preparation of N-photon Greenberger–Horne–Zeilinger state with conventional photon detectors. Applied Physics Letters, 2008, 92, .	3.3	68
13	Teleportation of an N-photon Greenberger-Horne-Zeilinger (GHZ) polarization-entangled state using linear optical elements. Journal of the Optical Society of America B: Optical Physics, 2010, 27, A1.	2.1	63
14	Nonadiabatic holonomic quantum computation using Rydberg blockade. Physical Review A, 2018, 97, .	2.5	63
15	Shortcuts to adiabatic passage for fast generation of Greenberger-Horne-Zeilinger states by transitionless quantum driving. Scientific Reports, 2015, 5, 15616.	3.3	57
16	Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities. Europhysics Letters, 2007, 80, 60001.	2.0	56
17	Generation of two-mode squeezed states for two separated atomic ensembles via coupled cavities. Physical Review A, 2010, 81, .	2.5	51
18	Remote preparation of the N-particle GHZ state using quantum statistics. Optics Communications, 2007, 277, 219-222.	2.1	45

Yan Xia

#	Article	IF	CITATIONS
19	Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1029.	2.1	44
20	Fast generation of three-atom singlet state by transitionless quantum driving. Scientific Reports, 2016, 6, 22202.	3.3	44
21	Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states' preparation and transition. Laser Physics Letters, 2014, 11, 115201.	1.4	43
22	Fast generation of W states of superconducting qubits with multiple SchrĶdinger dynamics. Scientific Reports, 2016, 6, 36737.	3.3	43
23	Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering. Physical Review Research, 2022, 4, .	3.6	43
24	Reverse engineering of a Hamiltonian by designing the evolution operators. Scientific Reports, 2016, 6, 30151.	3.3	42
25	Flexible scheme for the implementation of nonadiabatic geometric quantum computation. Physical Review A, 2020, 101, .	2.5	42
26	MULTIPARTY REMOTE STATE PREPARATION WITH LINEAR OPTICAL ELEMENTS. International Journal of Quantum Information, 2008, 06, 1127-1134.	1.1	41
27	Quantum state sharing using linear optical elements. Optics Communications, 2008, 281, 4946-4950.	2.1	40
28	One-step generation of cluster state by adiabatic passage in coupled cavities. Applied Physics Letters, 2010, 96, .	3.3	40
29	Deterministic Entanglement Swapping in a Superconducting Circuit. Physical Review Letters, 2019, 123, 060502.	7.8	39
30	Robust and high-fidelity nondestructive Rydberg parity meter. Physical Review A, 2020, 102, .	2.5	39
31	Entangled state generation via adiabatic passage in two distant cavities. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 4503-4511.	1.5	37
32	Quantum nodes for W-state generation in noisy channels. Physical Review A, 2008, 78, .	2.5	37
33	Robust and highly efficient discrimination of chiral molecules through three-mode parallel paths. Physical Review A, 2019, 100, .	2.5	37
34	Two-Path Interference for Enantiomer-Selective State Transfer of Chiral Molecules. Physical Review Applied, 2020, 13, .	3.8	37
35	Optimal shortcut approach based on an easily obtained intermediate Hamiltonian. Physical Review A, 2017, 95, .	2.5	36
36	Fast quantum state engineering via universal SU(2) transformation. Physical Review A, 2017, 96, .	2.5	34

#	Article	IF	CITATIONS
37	Complete Bell-state analysis for superconducting-quantum-interference-device qubits with a transitionless tracking algorithm. Physical Review A, 2017, 96, .	2.5	34
38	Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system. Physical Review A, 2018, 97, .	2.5	34
39	Deterministic interconversions between the Greenberger-Horne-Zeilinger states and the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>W</mml:mi> states by invariant-based pulse design. Physical Review A, 2020, 101, .</mml:math 	2.5	34
40	Accelerated and noise-resistant generation of high-fidelity steady-state entanglement with Rydberg atoms. Physical Review A, 2018, 97, .	2.5	33
41	Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade. Physical Review A, 2020, 102, .	2.5	33
42	Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Information Processing, 2014, 13, 1967-1978.	2.2	31
43	Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Information Processing, 2016, 15, 2033-2052.	2.2	31
44	Resilient quantum gates on periodically driven Rydberg atoms. Physical Review A, 2021, 103, .	2.5	31
45	Probabilistic joint remote preparation of a two-particle high-dimensional equatorial state. Optics Communications, 2011, 284, 5031-5035.	2.1	30
46	Improving the stimulated Raman adiabatic passage via dissipative quantum dynamics. Optics Express, 2016, 24, 22847.	3.4	30
47	Quantum state transfer in spin chains via shortcuts to adiabaticity. Physical Review A, 2018, 97, .	2.5	30
48	Fast and dephasing-tolerant preparation of steady Knill-Laflamme-Milburn states via dissipative Rydberg pumping. Physical Review A, 2021, 103, .	2.5	29
49	Re-examining generalized teleportation protocol. Optics Communications, 2007, 279, 395-398.	2.1	27
50	Transitionless-based shortcuts for the fast and robust generation of W states. Optics Communications, 2016, 380, 140-147.	2.1	27
51	Pulse design for multilevel systems by utilizing Lie transforms. Physical Review A, 2018, 97, .	2.5	27
52	Effective discrimination of chiral molecules in a cavity. Optics Letters, 2020, 45, 4952.	3.3	27
53	Deterministic joint remote preparation of an arbitrary three-qubit state via EPR pairs. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 055303.	2.1	26
54	Direct conversion of a four-atomWstate to a Greenberger-Horne-Zeilinger state via a dissipative process. Physical Review A, 2013, 88, .	2.5	26

#	Article	IF	CITATIONS
55	Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode. Physical Review A, 2019, 99, .	2.5	25
56	Arbitrary quantum state engineering in three-state systems via Counterdiabatic driving. Scientific Reports, 2016, 6, 38484.	3.3	25
57	Efficient implementation of the two-qubit controlled phase gate with cross-Kerr nonlinearity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 025503.	1.5	24
58	Effective quantum teleportation of an atomic state between two cavities with the cross-Kerr nonlinearity by interference of polarized photons. Journal of Applied Physics, 2011, 109, 103111.	2.5	24
59	Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein–Podolsky–Rosen pairs with a passive receiver. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 335306.	2.1	24
60	An effective shortcut to adiabatic passage for fast quantum state transfer in a cavity quantum electronic dynamics system. Laser Physics, 2014, 24, 105201.	1.2	24
61	Quantum dialogue using non-maximally entangled states based on entanglement swapping. Physica Scripta, 2007, 76, 363-369.	2.5	23
62	Fast generating Greenberger–Horne–Zeilinger state via iterative interaction pictures. Laser Physics Letters, 2016, 13, 105202.	1.4	23
63	Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving. Quantum Information Processing, 2016, 15, 2359-2376.	2.2	22
64	Speeding up adiabatic passage by adding Lyapunov control. Physical Review A, 2017, 96, .	2.5	22
65	Deterministic conversions between Greenberger-Horne-Zeilinger states and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>W</mml:mi> states of spin qubits via Lie-transform-based inverse Hamiltonian engineering. Physical Review A, 2019, 100, .</mml:math 	2.5	22
66	Multi-qubit phase gate on multiple resonators mediated by a superconducting bus. Optics Express, 2020, 28, 1954.	3.4	21
67	Enhanced Phonon Blockade in a Weakly Coupled Hybrid System via Mechanical Parametric Amplification. Physical Review Applied, 2022, 17, .	3.8	21
68	One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 468.	2.1	20
69	Robust single-qubit gates by composite pulses in three-level systems. Physical Review A, 2021, 103, .	2.5	20
70	Systematic-Error-Tolerant Multiqubit Holonomic Entangling Gates. Physical Review Applied, 2021, 16, .	3.8	20
71	Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 129.	2.1	19
72	Efficient creation of continuous-variable entanglement for two atomic ensembles in coupled cavities. Physical Review A, 2011, 83, .	2.5	19

Yan Xia

#	Article	IF	CITATIONS
73	Dissipative preparation of multibody entanglement via quantum feedback control. Physical Review A, 2012, 86, .	2.5	19
74	Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms. Frontiers of Physics, 2022, 17, 1.	5.0	19
75	Joint Remote Preparation of a General Three-Qubit State via Non-maximally GHZ States. International Journal of Theoretical Physics, 2012, 51, 1647-1654.	1.2	17
76	Pulse reverse engineering for controlling two-level quantum systems. Physical Review A, 2020, 101, .	2.5	17
77	Large-scale Greenberger-Horne-Zeilinger states through a topologically protected zero-energy mode in a superconducting qutrit-resonator chain. Physical Review A, 2021, 103, .	2.5	17
78	Discrimination of enantiomers through quantum interference and quantum Zeno effect. Optics Express, 2020, 28, 33475.	3.4	17
79	Demonstration of dynamical control of three-level open systems with a superconducting qutrit. New Journal of Physics, 2022, 24, 063031.	2.9	17
80	Atomic quantum state transferring and swapping via quantum Zeno dynamics. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2909.	2.1	16
81	Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics. Quantum Information Processing, 2013, 12, 411-424.	2.2	16
82	Generation of N-atom W-class states in spatially separated cavities. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2142.	2.1	16
83	Complete polarized photons Bell-states and Greenberger–Horne–Zeilinger-states analysis assisted by atoms. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2077.	2.1	16
84	Efficient entanglement concentration for partially entangled cluster states with weak cross-Kerr nonlinearity. Quantum Information Processing, 2015, 14, 2909-2928.	2.2	16
85	Coherent control in quantum open systems: An approach for accelerating dissipation-based quantum state generation. Physical Review A, 2017, 96, .	2.5	16
86	Two-level systems with periodic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi> -step driving fields: Exact dynamics and quantum state manipulations. Physical Review A, 2021, 104, .</mml:math 	2.5	16
87	Driving three atoms into a singlet state in an optical cavity via adiabatic passage of a dark state. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 015502.	1.5	15
88	Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems. Physical Review A, 2016, 94, .	2.5	15
89	Joint remote preparation of an arbitrary two-qubit state via a generalized seven-qubit brown state. Laser Physics, 2016, 26, 015203.	1.2	15
90	Accelerated and Noiseâ€Resistant Protocol of Dissipationâ€Based Knill–Laflamme–Milburn State Generation with Lyapunov Control, Annalen Der Physik, 2019, 531, 1900006	2.4	15

#	Article	IF	CITATIONS
91	Speeding up adiabatic state conversion in optomechanical systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 115501.	1.5	15
92	Deterministic generation of singlet states for \$\$N\$\$ N -atoms in coupled cavities via quantum Zeno dynamics. Quantum Information Processing, 2014, 13, 1857-1877.	2.2	14
93	Reverse engineering of a Hamiltonian for a three-level system via the Rodrigues' rotation formula. Laser Physics Letters, 2017, 14, 025201.	1.4	14
94	Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks. Annalen Der Physik, 2017, 529, 1700154.	2.4	14
95	Flexible deterministic joint remote state preparation with a passive receiver. Physica Scripta, 2013, 87, 025005.	2.5	13
96	Fast coherent manipulation of quantum states in open systems. Optics Express, 2016, 24, 21674.	3.4	13
97	Effective schemes for preparation of Greenberger–Horne–Zeilinger and W maximally entangled states with cross-Kerr nonlinearity and parity-check measurement. Applied Physics B: Lasers and Optics, 2013, 110, 551-561.	2.2	12
98	Effective protocol for preparation of four-photon polarization-entangled decoherence-free states with cross-Kerr nonlinearity. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 421.	2.1	12
99	Complete hyperentanglement-assisted multi-photon Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity. Optics Communications, 2014, 317, 102-106.	2.1	12
100	Effective scheme for preparation of a spin-qubit Greenberger–Horne–Zeilinger state and W state in a quantum-dot-microcavity system. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1323.	2.1	12
101	Implementing stabilizer codes in noisy environments. Physical Review A, 2017, 96, .	2.5	12
102	Shortcut Scheme for Oneâ€5tep Implementation of a Threeâ€Qubit Nonadiabatic Holonomic Gate. Annalen Der Physik, 2018, 530, 1800179.	2.4	12
103	Generation of nonclassical states in nonlinear oscillators via Lyapunov control. Physical Review A, 2020, 102, .	2.5	12
104	Composite pulses for high fidelity population transfer in three-level systems. New Journal of Physics, 2022, 24, 023014.	2.9	12
105	Effective protocol for generation of multiple atoms entangled states in two coupled cavities via adiabatic passage. Quantum Information Processing, 2013, 12, 3771-3783.	2.2	11
106	Accelerating Population Transfer in a Transmon Qutrit Via Shortcuts to Adiabaticity. Annalen Der Physik, 2018, 530, 1700351.	2.4	11
107	Improving Shortcuts to Nonâ€Hermitian Adiabaticity for Fast Population Transfer in Open Quantum Systems. Annalen Der Physik, 2018, 530, 1700247.	2.4	11
108	Squeezingâ€Enhanced Atom–Cavity Interaction in Coupled Cavities with High Dissipation Rates. Annalen Der Physik, 2019, 531, 1900220.	2.4	11

#	Article	IF	CITATIONS
109	Unselective ground-state blockade of Rydberg atoms for implementing quantum gates. Frontiers of Physics, 2022, 17, 1.	5.0	11
110	Effective pulse reverse-engineering for strong field–matter interaction. Optics Letters, 2020, 45, 3597.	3.3	11
111	Classical Communication Help and Probabilistic Teleportation with One-Dimensional Non-maximally Entangled Cluster States. International Journal of Theoretical Physics, 2008, 47, 1552-1558.	1.2	10
112	Two-photon phase gate with linear optical elements and atom–cavity system. Quantum Information Processing, 2016, 15, 4521-4535.	2.2	10
113	Fast controlled preparation of two-atom maximally entangled state and N-atom W state in the direct coupled cavity systems via shortcuts to adiabatic passage. European Physical Journal D, 2016, 70, 1.	1.3	10
114	Protecting Quantum State in Timeâ€Dependent Decoherenceâ€Free Subspaces Without the Rotatingâ€Wave Approximation. Annalen Der Physik, 2017, 529, 1700186.	2.4	10
115	Robust population inversion in three-level systems by composite pulses. Physical Review A, 2022, 105, .	2.5	10
116	Efficient W polarization state distribution over an arbitrary collective-noise channel with cross-Kerr nonlinearity. Optics Communications, 2011, 284, 5866-5870.	2.1	9
117	Effective protocol for preparation of N-photon Greenberger–Horne–Zeilinger states with conventional photon detectors. Quantum Information Processing, 2012, 11, 605-613.	2.2	9
118	Invariantâ€Based Pulse Design for Three‣evel Systems Without the Rotatingâ€Wave Approximation. Annalen Der Physik, 2017, 529, 1700004.	2.4	9
119	Shortcuts to adiabatic for implementing controlled-not gate with superconducting quantum interference device qubits. Quantum Information Processing, 2018, 17, 1.	2.2	9
120	Complete and Nondestructive Atomic Bellâ€State Analysis Assisted by Inverse Engineering. Annalen Der Physik, 2018, 530, 1800133.	2.4	9
121	One‣tep Implementation of N â€Qubit Nonadiabatic Holonomic Quantum Gates with Superconducting Qubits via Inverse Hamiltonian Engineering. Annalen Der Physik, 2019, 531, 1800427.	2.4	9
122	Complete and Nondestructive Atomic Greenberger–Horne–Zeilinger‣tate Analysis Assisted by Invariantâ€Based Inverse Engineering. Annalen Der Physik, 2019, 531, 1800447.	2.4	9
123	Accelerated and Robust Generation of <i>W</i> State by Parametric Amplification and Inverse Hamiltonian Engineering. Annalen Der Physik, 2020, 532, 2000002.	2.4	9
124	Implementation of universal quantum gates by periodic two-step modulation in a weakly nonlinear qubit. Physical Review A, 2020, 101, .	2.5	9
125	Noise-assisted quantum coherence protection in a hierarchical environment. Physical Review A, 2022, 105, .	2.5	9
126	Classical Communication Cost and Remote Preparation of the Two-Atom Maximally Entangled State. International Journal of Theoretical Physics, 2008, 47, 3226-3233.	1.2	8

#	Article	IF	CITATIONS
127	Resonant scheme for realizing quantum phase gates for two separate atoms via coupled cavities. Optics Communications, 2010, 283, 3052-3057.	2.1	8
128	Efficient nonlocal entangled state distribution over the collective-noise channel. Quantum Information Processing, 2013, 12, 3553-3568.	2.2	8
129	Generation of three-qubit Greenberger–Horne–Zeilinger state of superconducting qubits via transitionless quantum driving. Laser Physics, 2017, 27, 015202.	1.2	8
130	Rapid generation of a three-dimensional entangled state for two atoms trapped in a cavity via shortcuts to adiabatic passage. Quantum Information Processing, 2017, 16, 1.	2.2	8
131	Shortcuts to adiabatic for implementing controlled phase gate with Cooper-pair box qubits in circuit quantum electrodynamics system. Quantum Information Processing, 2019, 18, 1.	2.2	8
132	Enhancing atom-field interaction in the reduced multiphoton Tavis-Cummings model. Physical Review A, 2020, 101, .	2.5	8
133	Tripartite high-dimensional magnon-photon entanglement in phases with broken <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT -symmetry of a non-Hermitian hybrid system. Physical Paview B, 2022, 105</mml:mi </mml:math 	3.2	8
134	Unidirectional acoustic metamaterials based on nonadiabatic holonomic quantum transformations. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	5.1	8
135	Generalized Teleportation of a d-Level N-Particle GHZ State with One Pair of Entangled Particles asÂtheÂQuantum Channel. International Journal of Theoretical Physics, 2008, 47, 2835-2840.	1.2	7
136	Generalized remote preparation of the <i>d</i> -level <i>N</i> -particle GHZ state. Journal of Modern Optics, 2008, 55, 1723-1729.	1.3	7
137	Efficient error correction for N-particle polarized entangled states distribution over the collective-noise channel exploiting time entanglement. Applied Physics B: Lasers and Optics, 2014, 116, 977-984.	2.2	7
138	Generation of three-qubit Greenberger–Horne–Zeilinger states of superconducting qubits by using dressed states. Quantum Information Processing, 2017, 16, 1.	2.2	7
139	Robust Generation of Logical Qubit Singlet States with Reverse Engineering and Optimal Control with Spin Qubits. Advanced Quantum Technologies, 2020, 3, 2000113.	3.9	7
140	Generation of <i>N</i> â€particle <i>W</i> State with Trapped Λâ€Type lons by Transitionless Quantum Driving. Annalen Der Physik, 2021, 533, 2000526.	2.4	7
141	Optimal Control for Robust Photon State Transfer in Optomechanical Systems. Annalen Der Physik, 2021, 533, 2000608.	2.4	7
142	Preparation of a class of multiatom entangled states. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1599.	2.1	6
143	Deterministic Remote Preparation of Electrons States inÂCoupled Quantum Dots by Stimulated Raman Adiabatic Passage. International Journal of Theoretical Physics, 2010, 49, 2045-2050.	1.2	6
144	Effective Protocol for Generation of the Greenberger-Horne-Zeilinger State and Implementation of Controlled Phase Gate with Cross-Kerr Nonlinearity. International Journal of Theoretical Physics, 2014, 53, 17-27.	1.2	6

#	Article	lF	CITATIONS
145	Noise resistance of Toffoli gate in an array of coupled cavities. Journal of Modern Optics, 2014, 61, 1290-1297.	1.3	6
146	High fidelity Dicke-state generation with Lyapunov control in circuit QED system. Annals of Physics, 2018, 396, 44-55.	2.8	6
147	Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control. Optics Express, 2018, 26, 951.	3.4	6
148	Quantum state engineering by periodical two-step modulation in an atomic system. Optics Express, 2018, 26, 34789.	3.4	6
149	Quantum control with Lyapunov function and bang-bang solution in the optomechanics system. Frontiers of Physics, 2022, 17, 1.	5.0	6
150	Accelerated high-fidelity Bell states generation based on dissipation dynamics and Lyapunov control. Quantum Information Processing, 2021, 20, 1.	2.2	6
151	Chiral Discrimination via Shortcuts to Adiabaticity and Optimal Control. Annalen Der Physik, 0, , 2100573.	2.4	6
152	Quantum State Transfer via Parity Measurement. International Journal of Theoretical Physics, 2008, 47, 1294-1299.	1.2	5
153	PERFECT CONTROLLED QUANTUM SECURE DIRECT COMMUNICATION. International Journal of Quantum Information, 2008, 06, 463-470.	1.1	5
154	Positive Protocol for Quantum Teleportation Using Photon Polarization-Entangled W-Type State as the Quantum Channel. International Journal of Theoretical Physics, 2012, 51, 3423-3431.	1.2	5
155	Experimentally optimized implementation of the Fredkin gate with atoms in cavity QED. Quantum Information Processing, 2015, 14, 511-529.	2.2	5
156	Efficient spin Bell states and Greenberger–Horne–Zeilinger states analysis in the quantum dot–microcavity coupled system. Applied Physics B: Lasers and Optics, 2015, 119, 259-271.	2.2	5
157	One-step engineering many-atom NOON state. New Journal of Physics, 2018, 20, 093019.	2.9	5
158	Accurate Parity Meter Based on Coherent State Measurement. Annalen Der Physik, 2022, 534, .	2.4	5
159	Efficient and flexible protocol for implementing two-qubit controlled phase gates with cross-Kerr nonlinearity. Journal of Modern Optics, 2014, 61, 175-181.	1.3	4
160	Implementation of quantum state manipulation in a dissipative cavity. Scientific Reports, 2015, 5, 10656.	3.3	4
161	Efficient preparation of Greenberger–Horne–Zeilinger state and W state of atoms with the help of the controlled phase flip gates in quantum nodes connected by collective-noise channels. Journal of Modern Optics, 2015, 62, 449-462.	1.3	4
162	One-step deterministic generation of <i>N</i> -atom Greenberger–Horne–Zeilinger states in separate coupled cavities via quantum Zeno dynamics. Journal of Modern Optics, 2015, 62, 1591-1599.	1.3	4

#	Article	IF	CITATIONS
163	Noise-resistant phase gates with amplitude modulation. Physical Review A, 2020, 102, .	2.5	4
164	Generation of three-dimensional entanglement between two antiblockade Rydberg atoms with detuning-compensation-induced effective resonance. Laser Physics, 2020, 30, 045201.	1.2	4
165	Efficient implementation of complete and nondestructive Bell-state measurement for trapped ions with reverse engineering. Laser Physics Letters, 2020, 17, 125204.	1.4	4
166	Preparation of Greenberger–Horne–Zeilinger and W states of three atoms trapped in one cavity through cavity output process. Optics Communications, 2011, 284, 1094-1098.	2.1	3
167	Effective scheme for preparation of multi-atom Greenberger–Horne–Zeilinger states in coupled cavities via adiabatic passage. Journal of Modern Optics, 2013, 60, 1349-1354.	1.3	3
168	Accelerating adiabatic quantum transfer for three-level <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si48.gif" display="inline" overflow="scroll"><mml:mi>û</mml:mi>-type structure systems via picture transformation. Annals of Physics, 2017, 379, 102-111.</mml:math 	2.8	3
169	Implementation of Controlledâ€NOT Gate by Lyapunov Control. Annalen Der Physik, 2019, 531, 1900086.	2.4	3
170	Unconventional Geometric Phase Gate of Transmon Qubits With Inverse Hamiltonian Engineering. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-7.	2.9	3
171	Detecting a single atom in a cavity using the χ(2) nonlinear medium. Frontiers of Physics, 2022, 17, 1.	5.0	3
172	Controlled local implementation of nonlocal operations. Journal of Modern Optics, 2008, 55, 3063-3070.	1.3	2
173	Effective scheme for generation of \$\$N\$\$ N -dimension atomic Greenberger–Horne–Zeilinger states. Quantum Information Processing, 2014, 13, 1255-1265.	2.2	2
174	Fast CNOT gate via shortcuts to adiabatic passage. Journal of Modern Optics, 2016, 63, 1943-1951.	1.3	2
175	Deterministic generation of singlet state ofNatoms in coupled cavities via adiabatic passage of a dark state. Journal of Modern Optics, 2016, 63, 92-102.	1.3	2
176	Perfect quantum state engineering by the combination of the counterdiabatic driving and the reverse-engineering technique. Annals of Physics, 2017, 385, 40-56.	2.8	2
177	ontrolled implementation of two-photon controlled phase gate within a network. Quantum Information and Computation, 2010, 10, 821-828.	0.3	2
178	Generation of four-atom entangled decoherence-free states by interference of polarized photons. Journal of Modern Optics, 2009, 56, 1545-1549.	1.3	1
179	Linear Optical Protocol for Generation ofÂGreenberger-Horne-Zeilinger State within a Network. International Journal of Theoretical Physics, 2010, 49, 2456-2462.	1.2	1
180	LINEAR OPTICAL PROTOCOL FOR GENERATION OF W STATE WITHIN A NETWORK. International Journal of Quantum Information, 2010, 08, 1199-1206.	1.1	1

Yan Xia

#	Article	IF	CITATIONS
181	Quantum computation and entangled state generation through a cavity output process. Open Physics, 2011, 9, .	1.7	1
182	Emergence of multipartite optomechanical entanglement in microdisk cavities coupled to nanostring waveguide. Quantum Information Processing, 2013, 12, 3179-3190.	2.2	1
183	High-fidelity generating multi-qubit W state via dressed states in the system of multiple resonators coupled with a superconducting qubit. Canadian Journal of Physics, 2018, 96, 81-89.	1.1	1
184	Efficient implementation of arbitrary quantum state engineering in four-state system by counterdiabatic driving. Laser Physics Letters, 2018, 15, 075201.	1.4	1
185	Simplified process of dissipation-based Greenberger–Horne–Zeilinger state generation with Lyapunov control. Optics Communications, 2021, 483, 126671.	2.1	1
186	Shortcuts to Adiabatic Passage for Fast Generation of Entangled States in Directly Coupled Bimodal-Mode Cavitieseee. International Journal of Theoretical Physics, 2021, 60, 200-213.	1.2	1
187	Engineering distributed atomic NOON states via single-photon detection. Quantum Information Processing, 2021, 20, 1.	2.2	1
188	Optical protocol for quantum state sharing of superposed coherent state. Journal of Modern Optics, 2008, 55, 2071-2082.	1.3	0
189	Effective protocol for preparation of three-atom Greenberger-Horne-Zeilinger state and W state with the help of cross-Kerr nonlinearity. Open Physics, 2013, 11, .	1.7	0
190	Efficient single-photon-assisted entanglement concentration for an arbitrary entangled photon pair with the diamond nitrogen-vacancy center insides cavity. Optics Communications, 2015, 338, 174-180.	2.1	0
191	Effective preparation of the <i>N</i> -dimension spin Greenberger–Horne–Zeilinger state with quantum dots embedded in microcavities. Journal of Modern Optics, 0, , 1-10.	1.3	0
192	Error correction of quantum system dynamics via measurement–feedback control. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 165501.	1.5	0
193	Manipulation of Multiâ€Level Quantum Systems via Unsharp Measurements and Feedback Operations. Annalen Der Physik, 2019, 531, 1900063.	2.4	0
194	Entanglement Creations and Quantum Gate Implementations of Spin Qubits With Lyapunov Control. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-7.	2.9	0
195	Generation of Three-Atom Singlet State with High-Fidelity by Lyapunov Control. International Journal of Theoretical Physics, 2021, 60, 1416-1424.	1.2	0