List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4567150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Homologous Recombination System to Generate Epitope-Tagged Target Genes in Chaetomium thermophilum: A Genetic Approach to Investigate Native Thermostable Proteins. International Journal of Molecular Sciences, 2022, 23, 3198.	4.1	2
2	Emergence of the primordial pre-60S from the 90S pre-ribosome. Cell Reports, 2022, 39, 110640.	6.4	17
3	Transformation of Chaetomium thermophilum and Affinity Purification of Native Thermostable Protein Complexes. Methods in Molecular Biology, 2022, 2502, 35-50.	0.9	0
4	The C-terminal tail of ribosomal protein Rps15 is engaged in cytoplasmic pre-40S maturation. RNA Biology, 2022, 19, 560-574.	3.1	2
5	Structure of the Maturing 90S Pre-ribosome in Association with the RNA Exosome. Molecular Cell, 2021, 81, 293-303.e4.	9.7	36
6	Global Transcriptome Characterization and Assembly of the Thermophilic Ascomycete Chaetomium thermophilum. Genes, 2021, 12, 1549.	2.4	3
7	Construction of the Central Protuberance and L1 Stalk during 60S Subunit Biogenesis. Molecular Cell, 2020, 79, 615-628.e5.	9.7	48
8	90 <i>S</i> pre-ribosome transformation into the primordial 40 <i>S</i> subunit. Science, 2020, 369, 1470-1476.	12.6	59
9	Mutational Analysis of the Nsa2 N-Terminus Reveals Its Essential Role in Ribosomal 60S Subunit Assembly. International Journal of Molecular Sciences, 2020, 21, 9108.	4.1	5
10	Thermophile 90S Pre-ribosome Structures Reveal the Reverse Order of Co-transcriptional 18S rRNA Subdomain Integration. Molecular Cell, 2019, 75, 1256-1269.e7.	9.7	48
11	Crystal structures of Rea1-MIDAS bound to its ribosome assembly factor ligands resembling integrin–ligand-type complexes. Nature Communications, 2019, 10, 3050.	12.8	18
12	Nucleoporin Nup155 is part of the p53 network in liver cancer. Nature Communications, 2019, 10, 2147.	12.8	29
13	Eukaryotic Ribosome Assembly. Annual Review of Biochemistry, 2019, 88, 281-306.	11.1	270
14	Structure of the nuclear exosome captured on a maturing preribosome. Science, 2018, 360, 219-222.	12.6	92
15	Suppressor mutations in Rpf2–Rrs1 or Rpl5 bypass the Cgr1 function for pre-ribosomal 5S RNP-rotation. Nature Communications, 2018, 9, 4094.	12.8	22
16	Assembly Kinetics of Vimentin Tetramers to Unit-Length Filaments: A Stopped-Flow Study. Biophysical Journal, 2018, 114, 2408-2418.	0.5	29
17	A Puzzle of Life: Crafting Ribosomal Subunits. Trends in Biochemical Sciences, 2017, 42, 640-654.	7.5	159
18	The nuclear pore complex: understanding its function through structural insight. Nature Reviews Molecular Cell Biology, 2017, 18, 73-89.	37.0	511

#	Article	IF	CITATIONS
19	A short linear motif in scaffold Nup145C connects Y-complex with pre-assembled outer ring Nup82 complex. Nature Communications, 2017, 8, 1107.	12.8	32
20	3.2-Ãresolution structure of the 90S preribosome before A1 pre-rRNA cleavage. Nature Structural and Molecular Biology, 2017, 24, 954-964.	8.2	95
21	Structural insights into the interaction of the nuclear exosome helicase Mtr4 with the preribosomal protein Nop53. Rna, 2017, 23, 1780-1787.	3.5	42
22	Eukaryotic ribosome assembly, transport and quality control. Nature Structural and Molecular Biology, 2017, 24, 689-699.	8.2	190
23	Visualizing the Assembly Pathway of Nucleolar Pre-60S Ribosomes. Cell, 2017, 171, 1599-1610.e14.	28.9	162
24	Preribosomes escaping from the nucleus are caught during translation by cytoplasmic quality control. Nature Structural and Molecular Biology, 2017, 24, 1107-1115.	8.2	35
25	Reconstitution of the complete pathway of ITS2 processing at the pre-ribosome. Nature Communications, 2017, 8, 1787.	12.8	66
26	Interaction network of the ribosome assembly machinery from a eukaryotic thermophile. Protein Science, 2017, 26, 327-342.	7.6	30
27	Interdependent action of KH domain proteins Krr1 and Dim2 drive the 40S platform assembly. Nature Communications, 2017, 8, 2213.	12.8	38
28	Structural basis for 5'-ETS recognition by Utp4 at the early stages of ribosome biogenesis. PLoS ONE, 2017, 12, e0178752.	2.5	3
29	Mpp10 represents a platform for the interaction of multiple factors within the 90S pre-ribosome. PLoS ONE, 2017, 12, e0183272.	2.5	15
30	Cryo-EM structure of a late pre-40S ribosomal subunit from Saccharomyces cerevisiae. ELife, 2017, 6, .	6.0	77
31	Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science, 2016, 352, 363-365.	12.6	284
32	Architecture of the 90S Pre-ribosome: A Structural View on the Birth of the Eukaryotic Ribosome. Cell, 2016, 166, 380-393.	28.9	184
33	Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit. Nature Structural and Molecular Biology, 2016, 23, 1074-1082.	8.2	36
34	Developing genetic tools to exploit Chaetomium thermophilum for biochemical analyses of eukaryotic macromolecular assemblies. Scientific Reports, 2016, 6, 20937.	3.3	43
35	Concerted removal of the Erb1–Ytm1 complex in ribosome biogenesis relies on an elaborate interface. Nucleic Acids Research, 2016, 44, 926-939.	14.5	27
36	The K ⁺ -dependent GTPase Nug1 is implicated in the association of the helicase Dbp10 to the immature peptidyl transferase centre during ribosome maturation. Nucleic Acids Research, 2016, 44, 1800-1812.	14.5	36

#	Article	IF	CITATIONS
37	Architecture of the Rix1–Rea1 checkpoint machinery during pre-60S-ribosome remodeling. Nature Structural and Molecular Biology, 2016, 23, 37-44.	8.2	104
38	Direct and high throughput (HT) interactions on the ribosomal surface by iRIA. Scientific Reports, 2015, 5, 15401.	3.3	11
39	Structural characterization of the principal mRNA-export factor Mex67–Mtr2 fromChaetomium thermophilum. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 876-888.	0.8	8
40	Towards understanding nuclear pore complex architecture and dynamics in the age of integrative structural analysis. Current Opinion in Cell Biology, 2015, 34, 31-38.	5.4	66
41	NTF2-like domain of Tap plays a critical role in cargo mRNA recognition and export. Nucleic Acids Research, 2015, 43, 1894-1904.	14.5	23
42	Coordinated Ribosomal ITS2 RNA Processing by the Las1 Complex Integrating Endonuclease, Polynucleotide Kinase, and Exonuclease Activities. Molecular Cell, 2015, 60, 808-815.	9.7	83
43	Structural Characterization of the Chaetomium thermophilum TREX-2 Complex and its Interaction with the mRNA Nuclear Export Factor Mex67:Mtr2. Structure, 2015, 23, 1246-1257.	3.3	26
44	Structural basis for assembly and function of the Nup82 complex in the nuclear pore scaffold. Journal of Cell Biology, 2015, 208, 283-297.	5.2	64
45	Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones. Nature Communications, 2015, 6, 7494.	12.8	63
46	Coordinated Ribosomal L4 Protein Assembly into the Pre-Ribosome Is Regulated by Its Eukaryote-Specific Extension. Molecular Cell, 2015, 58, 854-862.	9.7	69
47	Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site. Nature Communications, 2015, 6, 6510.	12.8	51
48	Architecture of the fungal nuclear pore inner ring complex. Science, 2015, 350, 56-64.	12.6	125
49	The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins. Cell, 2015, 162, 1029-1038.	28.9	170
50	Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel. Nature Structural and Molecular Biology, 2015, 22, 774-781.	8.2	95
51	Evidence for an evolutionary relationship between the large adaptor nucleoporin Nup192 and karyopherins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2530-2535.	7.1	44
52	Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes. Nucleic Acids Research, 2014, 42, 8635-8647.	14.5	77
53	Utilizing the Dyn2 Dimerization-Zipper as a Tool to Probe NPC Structure and Function. Methods in Cell Biology, 2014, 122, 99-115.	1.1	3
54	Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nature Communications, 2014, 5, 5013.	12.8	136

#	Article	IF	CITATIONS
55	An integrated approach for genome annotation of the eukaryotic thermophile Chaetomium thermophilum. Nucleic Acids Research, 2014, 42, 13525-13533.	14.5	55
56	A Pulse–Chase Epitope Labeling to Study Cellular Dynamics of Newly Synthesized Proteins. Methods in Cell Biology, 2014, 122, 147-163.	1.1	5
57	Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export. Nature, 2014, 505, 112-116.	27.8	132
58	A network of assembly factors is involved in remodeling rRNA elements during preribosome maturation. Journal of Cell Biology, 2014, 207, 481-498.	5.2	44
59	60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nature Communications, 2014, 5, 3491.	12.8	117
60	Structural characterization of a eukaryotic chaperone—the ribosome-associated complex. Nature Structural and Molecular Biology, 2013, 20, 23-28.	8.2	79
61	Structural Determinants of Conformational Flexibility and Long-Range Allostery of the CRM1 Export Complex. Biophysical Journal, 2013, 104, 68a.	0.5	0
62	Consistent mutational paths predict eukaryotic thermostability. BMC Evolutionary Biology, 2013, 13, 7.	3.2	60
63	Structural basis of histone H2A–H2B recognition by the essential chaperone FACT. Nature, 2013, 499, 111-114.	27.8	159
64	Protein Interfaces of the Conserved Nup84 Complex from Chaetomium thermophilum Shown by Crosslinking Mass Spectrometry and Electron Microscopy. Structure, 2013, 21, 1672-1682.	3.3	48
65	Eukaryotic ribosome biogenesis at a glance. Journal of Cell Science, 2013, 126, 4815-4821.	2.0	263
66	Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucleic Acids Research, 2013, 41, 1191-1210.	14.5	61
67	New twist to nuclear import: When two travel together. Communicative and Integrative Biology, 2013, 6, e24792.	1.4	26
68	Structural basis for cooperativity of CRM1 export complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 960-965.	7.1	64
69	Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Research, 2012, 40, 4562-4573.	14.5	111
70	ATPase-dependent role of the atypical kinase Rio2 on the evolving pre-40S ribosomal subunit. Nature Structural and Molecular Biology, 2012, 19, 1316-1323.	8.2	137
71	The Conserved Bud20 Zinc Finger Protein Is a New Component of the Ribosomal 60S Subunit Export Machinery. Molecular and Cellular Biology, 2012, 32, 4898-4912.	2.3	42
72	Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex. Nature Structural and Molecular Biology, 2012, 19, 328-336.	8.2	90

#	Article	IF	CITATIONS
73	Analysis of the yeast nucleoporin Nup188 reveals a conserved S-like structure with similarity to karyopherins. Journal of Structural Biology, 2012, 177, 99-105.	2.8	30
74	Monitoring Spatiotemporal Biogenesis of Macromolecular Assemblies by Pulse-Chase Epitope Labeling. Molecular Cell, 2012, 47, 788-796.	9.7	23
75	Synchronizing Nuclear Import of Ribosomal Proteins with Ribosome Assembly. Science, 2012, 338, 666-671.	12.6	95
76	Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nature Structural and Molecular Biology, 2012, 19, 1234-1241.	8.2	103
77	The power of AAA-ATPases on the road of pre-60S ribosome maturation — Molecular machines that strip pre-ribosomal particles. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 92-100.	4.1	79
78	Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nature Structural and Molecular Biology, 2011, 18, 1376-1380.	8.2	59
79	Insight into Structure and Assembly of the Nuclear Pore Complex by Utilizing the Genome of a Eukaryotic Thermophile. Cell, 2011, 146, 277-289.	28.9	232
80	Linking gene regulation to mRNA production and export. Current Opinion in Cell Biology, 2011, 23, 302-309.	5.4	107
81	Probing the nucleoporin FG repeat network defines structural and functional features of the nuclear pore complex. Journal of Cell Biology, 2011, 195, 183-192.	5.2	8
82	Driving ribosome assembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 673-683.	4.1	411
83	The structure of Get4 reveals an αâ€solenoid fold adapted for multiple interactions in tailâ€anchored protein biogenesis. FEBS Letters, 2010, 584, 1509-1514.	2.8	23
84	Precise mapping of subunits in multiprotein complexes by a versatile electron microscopy label. Nature Structural and Molecular Biology, 2010, 17, 775-778.	8.2	36
85	Structural Basis for the Interaction between Yeast Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex Components Sgf11 and Sus1. Journal of Biological Chemistry, 2010, 285, 3850-3856.	3.4	32
86	Gene Regulation by Nucleoporins and Links to Cancer. Molecular Cell, 2010, 38, 6-15.	9.7	126
87	The AAA-ATPase Rea1 Drives Removal of Biogenesis Factors during Multiple Stages of 60S Ribosome Assembly. Molecular Cell, 2010, 38, 712-721.	9.7	114
88	Structural Basis for Assembly and Activation of the Heterotetrameric SAGA Histone H2B Deubiquitinase Module. Cell, 2010, 141, 606-617.	28.9	164
89	Nucleus-Specific and Cell Cycle-Regulated Degradation of Mitogen-Activated Protein Kinase Scaffold Protein Ste5 Contributes to the Control of Signaling Competence. Molecular and Cellular Biology, 2009, 29, 582-601.	2.3	38
90	Mutational Uncoupling of the Role of Sus1 in Nuclear Pore Complex Targeting of an mRNA Export Complex and Histone H2B Deubiquitination. Journal of Biological Chemistry, 2009, 284, 12049-12056.	3.4	21

#	Article	IF	CITATIONS
91	Purification of Nuclear Poly(A)-binding Protein Nab2 Reveals Association with the Yeast Transcriptome and a Messenger Ribonucleoprotein Core Structure. Journal of Biological Chemistry, 2009, 284, 34911-34917.	3.4	99
92	RNA Helicase Prp43 and Its Co-factor Pfa1 Promote 20 to 18 S rRNA Processing Catalyzed by the Endonuclease Nob1. Journal of Biological Chemistry, 2009, 284, 35079-35091.	3.4	166
93	An Endoribonuclease Functionally Linked to Perinuclear mRNP Quality Control Associates with the Nuclear Pore Complexes. PLoS Biology, 2009, 7, e1000008.	5.6	53
94	Sem1 is a functional component of the nuclear pore complex–associated messenger RNA export machinery. Journal of Cell Biology, 2009, 184, 833-846.	5.2	96
95	Two structurally distinct domains of the nucleoporin Nup170 cooperate to tether a subset of nucleoporins to nuclear pores. Journal of Cell Biology, 2009, 185, 387-395.	5.2	35
96	Linear ubiquitin fusion to Rps31 and its subsequent cleavage are required for the efficient production and functional integrity of 40S ribosomal subunits. Molecular Microbiology, 2009, 72, 69-84.	2.5	61
97	Adaptor Aly and co-adaptor Thoc5 function in the Tap-p15-mediated nuclear export of HSP70 mRNA. EMBO Journal, 2009, 28, 556-567.	7.8	130
98	Arrest by ribosome. Nature, 2009, 459, 46-47.	27.8	25
99	Mechanochemical Removal of Ribosome Biogenesis Factors from Nascent 60S Ribosomal Subunits. Cell, 2009, 138, 911-922.	28.9	141
100	Sus1, Cdc31, and the Sac3 CID Region Form a Conserved Interaction Platform that Promotes Nuclear Pore Association and mRNA Export. Molecular Cell, 2009, 33, 727-737.	9.7	128
101	Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21131-21136.	7.1	92
102	Crystallographic studies of the nuclear pore. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s40-s40.	0.3	0
103	A versatile interaction platform on the Mex67–Mtr2 receptor creates an overlap between mRNA and ribosome export. EMBO Journal, 2008, 27, 6-16.	7.8	51
104	Structural Basis of the Nic96 Subcomplex Organization in the Nuclear Pore Channel. Molecular Cell, 2008, 29, 46-55.	9.7	83
105	Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nature Cell Biology, 2008, 10, 707-715.	10.3	188
106	The AAA ATPase Rix7 powers progression of ribosome biogenesis by stripping Nsa1 from pre-60S particles. Journal of Cell Biology, 2008, 181, 935-944.	5.2	78
107	Membrane curvature induced by Arf1-GTP is essential for vesicle formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11731-11736.	7.1	146
108	The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. Journal of Cell Biology, 2008, 182, 897-910.	5.2	100

#	Article	lF	CITATIONS
109	Adjunct Duties for Karyopherins: Regulating Septin Sumoylation. Developmental Cell, 2007, 12, 669-670.	7.0	0
110	Nuclear Export of Ribosomal 60S Subunits by the General mRNA Export Receptor Mex67-Mtr2. Molecular Cell, 2007, 26, 51-62.	9.7	142
111	Arx1 Functions as an Unorthodox Nuclear Export Receptor for the 60S Preribosomal Subunit. Molecular Cell, 2007, 27, 767-779.	9.7	104
112	The crystal structure of Ebp1 reveals a methionine aminopeptidase fold as binding platform for multiple interactions. FEBS Letters, 2007, 581, 4450-4454.	2.8	55
113	Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. Nature Cell Biology, 2007, 9, 788-796.	10.3	84
114	Exporting RNA from the nucleus to the cytoplasm. Nature Reviews Molecular Cell Biology, 2007, 8, 761-773.	37.0	644
115	Coordinated Nuclear Import of RNA Polymerase III Subunits. Traffic, 2006, 7, 465-473.	2.7	20
116	Formation and Nuclear Export of Preribosomes Are Functionally Linked to the Smallâ€Ubiquitinâ€Related Modifier Pathway. Traffic, 2006, 7, 1311-1321.	2.7	87
117	Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature, 2006, 441, 651-655.	27.8	191
118	TOR regulates late steps of ribosome maturation in the nucleoplasm via Nog1 in response to nutrients. EMBO Journal, 2006, 25, 3832-3842.	7.8	54
119	The NUG1 GTPase Reveals an N-terminal RNA-binding Domain That Is Essential for Association with 60 S Pre-ribosomal Particles. Journal of Biological Chemistry, 2006, 281, 24737-24744.	3.4	52
120	The mRNA Export Factor Sus1 Is Involved in Spt/Ada/Gcn5 Acetyltransferase-mediated H2B Deubiquitinylation through Its Interaction with Ubp8 and Sgf11. Molecular Biology of the Cell, 2006, 17, 4228-4236.	2.1	115
121	Functional link between ribosome formation and biogenesis of iron–sulfur proteins. EMBO Journal, 2005, 24, 580-588.	7.8	153
122	Reconstitution of Nup157 and Nup145N into the Nup84 Complex*[boxs]. Journal of Biological Chemistry, 2005, 280, 18442-18451.	3.4	45
123	Recruitment of the human TREX complex to mRNA during splicing. Genes and Development, 2005, 19, 1512-1517.	5.9	365
124	The tRNA aminoacylation co-factor Arc1p is excluded from the nucleus by an Xpo1p-dependent mechanism. FEBS Letters, 2005, 579, 969-975.	2.8	13
125	Cotranscriptional recruitment of the serine-arginine-rich (SR)-like proteins Gbp2 and Hrb1 to nascent mRNA via the TREX complex. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1858-1862.	7.1	124
126	Rea1, a Dynein-related Nuclear AAA-ATPase, Is Involved in Late rRNA Processing and Nuclear Export of 60 S Subunits. Journal of Biological Chemistry, 2004, 279, 55411-55418.	3.4	63

#	Article	IF	CITATIONS
127	A Proteome-wide Approach Identifies Sumoylated Substrate Proteins in Yeast. Journal of Biological Chemistry, 2004, 279, 41346-41351.	3.4	236
128	The Yeast Kinase Swe1 is Required for Proper Entry into Cell Cycle After Arrest Due to Ribosome Biogenesis and Protein Synthesis Defects. Cell Cycle, 2004, 3, 646-652.	2.6	10
129	Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nature Cell Biology, 2004, 6, 840-848.	10.3	153
130	A Pre-Ribosome with a Tadpole-like Structure Functions in ATP-Dependent Maturation of 60S Subunits. Molecular Cell, 2004, 15, 295-301.	9.7	62
131	Sus1, a Functional Component of the SAGA Histone Acetylase Complex and the Nuclear Pore-Associated mRNA Export Machinery. Cell, 2004, 116, 75-86.	28.9	330
132	The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO Journal, 2003, 22, 1370-1380.	7.8	264
133	Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends in Cell Biology, 2003, 13, 255-263.	7.9	427
134	Formation and nuclear export of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p. EMBO Reports, 2003, 4, 1156-1162.	4.5	71
135	Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nature Cell Biology, 2003, 5, 21-27.	10.3	125
136	Identification and Characterization of a Novel RanGTP-binding Protein in the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 15397-15405.	3.4	10
137	A Noc Complex Specifically Involved in the Formation and Nuclear Export of Ribosomal 40 S Subunits. Journal of Biological Chemistry, 2003, 278, 4072-4081.	3.4	110
138	Complex Formation between Tap and p15 Affects Binding to FG-repeat Nucleoporins and Nucleocytoplasmic Shuttling. Journal of Biological Chemistry, 2002, 277, 9242-9246.	3.4	49
139	An intron in the YRA1 gene is required to control Yra1 protein expression and mRNA export in yeast. EMBO Reports, 2002, 3, 438-442.	4.5	28
140	A Conserved mRNA Export Machinery Coupled to pre-mRNA Splicing. Cell, 2002, 108, 523-531.	28.9	360
141	90S Pre-Ribosomes Include the 35S Pre-rRNA, the U3 snoRNP, and 40S Subunit Processing Factors but Predominantly Lack 60S Synthesis Factors. Molecular Cell, 2002, 10, 105-115.	9.7	427
142	Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing. Journal of Cell Biology, 2002, 157, 941-952.	5.2	73
143	TREX is a conserved complex coupling transcription with messenger RNA export. Nature, 2002, 417, 304-308.	27.8	736
144	Structure of the C-terminal FG-nucleoporin binding domain of Tap/NXF1. Nature Structural Biology, 2002, 9, 247-251.	9.7	65

#	Article	IF	CITATIONS
145	Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO Journal, 2002, 21, 387-397.	7.8	203
146	60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO Journal, 2002, 21, 5539-5547.	7.8	307
147	The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO Journal, 2002, 21, 5843-5852.	7.8	238
148	Nuclear Export of tRNA. Results and Problems in Cell Differentiation, 2002, 35, 115-131.	0.7	15
149	Identification of a 60S Preribosomal Particle that Is Closely Linked to Nuclear Export. Molecular Cell, 2001, 8, 517-529.	9.7	289
150	Maturation and Intranuclear Transport of Pre-Ribosomes Requires Noc Proteins. Cell, 2001, 105, 499-509.	28.9	206
151	Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature, 2001, 413, 648-652.	27.8	271
152	Biogenesis of the Signal Recognition Particle (Srp) Involves Import of Srp Proteins into the Nucleolus, Assembly with the Srp-Rna, and Xpo1p-Mediated Export. Journal of Cell Biology, 2001, 153, 745-762.	5.2	128
153	Nuclear Export of 60S Ribosomal Subunits Depends on Xpo1p and Requires a Nuclear Export Sequence-Containing Factor, Nmd3p, That Associates with the Large Subunit Protein Rpl10p. Molecular and Cellular Biology, 2001, 21, 3405-3415.	2.3	283
154	The Nsp1p Carboxy-Terminal Domain Is Organized into Functionally Distinct Coiled-Coil Regions Required for Assembly of Nucleoporin Subcomplexes and Nucleocytoplasmic Transport. Molecular and Cellular Biology, 2001, 21, 7944-7955.	2.3	61
155	Pus1p-dependent tRNA Pseudouridinylation Becomes Essential When tRNA Biogenesis Is Compromised in Yeast. Journal of Biological Chemistry, 2001, 276, 46333-46339.	3.4	46
156	Targeting of Ran: variation on a common theme?. Journal of Cell Science, 2001, 114, 3233-3241.	2.0	29
157	The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature, 2000, 407, 401-405.	27.8	455
158	Purification of Protein A-tagged Yeast Ran Reveals Association with a Novel Karyopherin β Family Member, Pdr6p. Journal of Biological Chemistry, 2000, 275, 467-471.	3.4	15
159	Yeast Ran-Binding Protein 1 (Yrb1) Shuttles between the Nucleus and Cytoplasm and Is Exported from the Nucleus via a CRM1 (XPO1)-Dependent Pathway. Molecular and Cellular Biology, 2000, 20, 4295-4308.	2.3	55
160	Structure and Assembly of the Nup84p Complex. Journal of Cell Biology, 2000, 149, 41-54.	5.2	163
161	Mlp2p, A Component of Nuclear Pore Attached Intranuclear Filaments, Associates with Nic96p. Journal of Biological Chemistry, 2000, 275, 343-350.	3.4	81
162	Mex67p Mediates Nuclear Export of a Variety of RNA Polymerase II Transcripts. Journal of Biological Chemistry, 2000, 275, 8361-8368.	3.4	81

#	Article	IF	CITATIONS
163	Nup116p Associates with the Nup82p-Nsp1p-Nup159p Nucleoporin Complex. Journal of Biological Chemistry, 2000, 275, 23540-23548.	3.4	52
164	Review: Transport of tRNA out of the Nucleus—Direct Channeling to the Ribosome?. Journal of Structural Biology, 2000, 129, 288-294.	2.8	65
165	Yeast Nuclear Pore Complex Assembly Defects Determined by Nuclear Envelope Reconstruction. Journal of Structural Biology, 2000, 132, 1-5.	2.8	25
166	Binding of the Mex67p/Mtr2p Heterodimer to Fxfg, Clfg, and Fg Repeat Nucleoporins Is Essential for Nuclear mRNA Export. Journal of Cell Biology, 2000, 150, 695-706.	5.2	200
167	An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes and Development, 2000, 14, 830-840.	5.9	156
168	A Novel In Vivo Assay Reveals Inhibition of Ribosomal Nuclear Export in Ran-Cycle and Nucleoporin Mutants. Journal of Cell Biology, 1999, 144, 389-401.	5.2	161
169	Nup192p Is a Conserved Nucleoporin with a Preferential Location at the Inner Site of the Nuclear Membrane. Journal of Biological Chemistry, 1999, 274, 22646-22651.	3.4	44
170	The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO Journal, 1999, 18, 2593-2609.	7.8	387
171	Transfer RNA biogenesis: A visa to leave the nucleus. Current Biology, 1999, 9, R238-R241.	3.9	36
172	Nuclear RNA export in yeast. FEBS Letters, 1999, 452, 77-81.	2.8	26
173	Nucleus and gene expression. Current Opinion in Cell Biology, 1998, 10, 301-303.	5.4	1
174	Nuclear mRNA Export Requires Complex Formation between Mex67p and Mtr2p at the Nuclear Pores. Molecular and Cellular Biology, 1998, 18, 6826-6838.	2.3	248
175	Yeast Los1p Has Properties of an Exportin-Like Nucleocytoplasmic Transport Factor for tRNA. Molecular and Cellular Biology, 1998, 18, 6374-6386.	2.3	226
176	Nup93, a Vertebrate Homologue of Yeast Nic96p, Forms a Complex with a Novel 205-kDa Protein and Is Required for Correct Nuclear Pore Assembly. Molecular Biology of the Cell, 1997, 8, 2017-2038.	2.1	147
177	YEAST GENETICS TO DISSECT THE NUCLEAR PORE COMPLEX AND NUCLEOCYTOPLASMIC TRAFFICKING. Annual Review of Genetics, 1997, 31, 277-313.	7.6	130
178	From nucleoporins to nuclear pore complexes. Current Opinion in Cell Biology, 1997, 9, 401-411.	5.4	236
179	Arrest by ribosome. , 0, .		1