
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4566237/publications.pdf Version: 2024-02-01

LILLA LASKIN

#	Article	IF	CITATIONS
1	Chemistry of Atmospheric Brown Carbon. Chemical Reviews, 2015, 115, 4335-4382.	23.0	1,121
2	Mass spectral molecular networking of living microbial colonies. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1743-52.	3.3	804
3	Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst, The, 2010, 135, 2233.	1.7	404
4	The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature, 2019, 574, 187-192.	13.7	393
5	Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2012, 84, 141-148.	3.2	278
6	Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon. Environmental Science & Technology, 2014, 48, 10217-10226.	4.6	250
7	Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles. Environmental Science & Technology, 2016, 50, 11815-11824.	4.6	237
8	Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 50820.	0.9	227
9	Molecular Characterization of Nitrogen-Containing Organic Compounds in Biomass Burning Aerosols Using High-Resolution Mass Spectrometry. Environmental Science & Technology, 2009, 43, 3764-3771.	4.6	219
10	Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event. Environmental Science & Technology, 2017, 51, 11561-11570.	4.6	215
11	Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Physical Chemistry Chemical Physics, 2015, 17, 23312-23325.	1.3	210
12	Formation of nitrogen―and sulfur ontaining lightâ€absorbing compounds accelerated by evaporation of water from secondary organic aerosols. Journal of Geophysical Research, 2012, 117, .	3.3	189
13	Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical. Atmospheric Chemistry and Physics, 2014, 14, 13801-13816.	1.9	187
14	Activation of large lons in FT-ICR mass spectrometry. Mass Spectrometry Reviews, 2005, 24, 135-167.	2.8	182
15	Collisional activation of peptide ions in FT-ICR mass spectrometry. Mass Spectrometry Reviews, 2003, 22, 158-181.	2.8	178
16	High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene. Atmospheric Environment, 2010, 44, 1032-1042.	1.9	167
17	Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 6931-6944.	1.9	167
18	High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. Physical Chemistry Chemical Physics, 2008, 10, 1009-1022.	1.3	166

#	Article	IF	CITATIONS
19	LungMAP: The Molecular Atlas of Lung Development Program. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L733-L740.	1.3	162
20	High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols. Analytical Chemistry, 2010, 82, 2048-2058.	3.2	160
21	Optical properties and aging of light-absorbing secondary organic aerosol. Atmospheric Chemistry and Physics, 2016, 16, 12815-12827.	1.9	150
22	Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate. Environmental Science & Technology, 2015, 49, 14257-14266.	4.6	149
23	Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure Photoionization. Analytical Chemistry, 2018, 90, 12493-12502.	3.2	148
24	Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. Physical Chemistry Chemical Physics, 2011, 13, 3612.	1.3	147
25	Analysis of Organic Anionic Surfactants in Fine and Coarse Fractions of Freshly Emitted Sea Spray Aerosol. Environmental Science & Technology, 2016, 50, 2477-2486.	4.6	143
26	Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray lonization High-Resolution Mass Spectrometry. Environmental Science & Technology, 2014, 48, 10993-11001.	4.6	138
27	Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques. Analytical Chemistry, 2016, 88, 52-73.	3.2	137
28	A Comparative Study of Collision-Induced and Surface-Induced Dissociation. 1. Fragmentation of Protonated Dialanine. Journal of the American Chemical Society, 2000, 122, 9703-9714.	6.6	131
29	Ion/surface reactions and ion soft-landing. Physical Chemistry Chemical Physics, 2005, 7, 1490.	1.3	125
30	High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry. Nature Protocols, 2019, 14, 3445-3470.	5.5	125
31	Kinetic energy release distributions in mass spectrometry. Journal of Mass Spectrometry, 2001, 36, 459-478.	0.7	121
32	Automated Platform for High-Resolution Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2012, 84, 8351-8356.	3.2	120
33	Excitation–Emission Spectra and Fluorescence Quantum Yields for Fresh and Aged Biogenic Secondary Organic Aerosols. Environmental Science & Technology, 2013, 47, 5763-5770.	4.6	119
34	Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition. Atmospheric Chemistry and Physics, 2018, 18, 6331-6351.	1.9	116
35	Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol. Atmospheric Chemistry and Physics, 2020, 20, 1105-1129.	1.9	115
36	Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity. CheM, 2017, 2, 655-667.	5.8	111

#	Article	IF	CITATIONS
37	Molecular Characterization of Organic Aerosols Using Nanospray-Desorption/Electrospray Ionization-Mass Spectrometry. Analytical Chemistry, 2010, 82, 7979-7986.	3.2	110
38	Photolytic processing of secondary organic aerosols dissolved in cloud droplets. Physical Chemistry Chemical Physics, 2011, 13, 12199.	1.3	110
39	Soft-landing of peptide ions onto self-assembled monolayer surfaces: an overview. Physical Chemistry Chemical Physics, 2008, 10, 1079-1090.	1.3	109
40	Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2013, 85, 882-889.	3.2	108
41	Surface-Induced Dissociation in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer:Â Instrument Design and Evaluation. Analytical Chemistry, 2002, 74, 3255-3261.	3.2	102
42	Metabolic Profiling Directly from the Petri Dish Using Nanospray Desorption Electrospray Ionization Imaging Mass Spectrometry. Analytical Chemistry, 2013, 85, 10385-10391.	3.2	101
43	Nitrogen-Containing Organic Compounds and Oligomers in Secondary Organic Aerosol Formed by Photooxidation of Isoprene. Environmental Science & Technology, 2011, 45, 6908-6918.	4.6	100
44	Time-resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry. Physical Chemistry Chemical Physics, 2009, 11, 7931.	1.3	99
45	Soft Landing of Complex Molecules on Surfaces. Annual Review of Analytical Chemistry, 2011, 4, 83-104.	2.8	98
46	Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia. Physical Chemistry Chemical Physics, 2014, 16, 10629-10642.	1.3	98
47	The Effect of Solvent on the Analysis of Secondary Organic Aerosol Using Electrospray Ionization Mass Spectrometry. Environmental Science & Technology, 2008, 42, 7341-7346.	4.6	96
48	Shattering of Peptide Ions on Self-Assembled Monolayer Surfaces. Journal of the American Chemical Society, 2003, 125, 1625-1632.	6.6	94
49	Molecular Selectivity of Brown Carbon Chromophores. Environmental Science & Technology, 2014, 48, 12047-12055.	4.6	94
50	Shotgun Approach for Quantitative Imaging of Phospholipids Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2014, 86, 1872-1880.	3.2	93
51	Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation. Atmospheric Chemistry and Physics, 2016, 16, 4511-4527.	1.9	92
52	Higher-Order Mass Defect Analysis for Mass Spectra of Complex Organic Mixtures. Analytical Chemistry, 2011, 83, 4924-4929.	3.2	91
53	Brown carbon formation from ketoaldehydes of biogenic monoterpenes. Faraday Discussions, 2013, 165, 473.	1.6	89
54	Charge-Remote Fragmentation of Odd-Electron Peptide lons. Analytical Chemistry, 2007, 79, 6607-6614.	3.2	88

#	Article	IF	CITATIONS
55	An NMR Study of He2Inside C70. Journal of the American Chemical Society, 1998, 120, 6380-6383.	6.6	87
56	Mass Spectrometry Analysis in Atmospheric Chemistry. Analytical Chemistry, 2018, 90, 166-189.	3.2	87
57	Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing. Nature Communications, 2016, 7, 11399.	5.8	86
58	Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances. Environmental Chemistry, 2012, 9, 163.	0.7	84
59	Matrix effects in biological mass spectrometry imaging: identification and compensation. Analyst, The, 2014, 139, 3528.	1.7	84
60	Internal energy distributions resulting from sustained off-resonance excitation in FTMS. I. Fragmentation of the bromobenzene radical cation. International Journal of Mass Spectrometry, 2000, 195-196, 285-302.	0.7	82
61	Comparative Study of Collision-Induced and Surface-Induced Dissociation. 2. Fragmentation of Small Alanine-Containing Peptides in FT-ICR MS. Journal of Physical Chemistry B, 2001, 105, 1895-1900.	1.2	80
62	Quantitative Mass Spectrometry Imaging of Biological Systems. Annual Review of Physical Chemistry, 2021, 72, 307-329.	4.8	78
63	Effect of viscosity on photodegradation rates in complex secondary organic aerosol materials. Physical Chemistry Chemical Physics, 2016, 18, 8785-8793.	1.3	76
64	High Spatial Resolution Imaging of Mouse Pancreatic Islets Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2018, 90, 6548-6555.	3.2	76
65	Surface-induced dissociation of peptide ions: Kinetics and dynamics. Journal of the American Society for Mass Spectrometry, 2003, 14, 1340-1347.	1.2	75
66	Reactive landing of peptide ions on self-assembled monolayer surfaces: an alternative approach for covalent immobilization of peptides on surfaces. Physical Chemistry Chemical Physics, 2008, 10, 1512.	1.3	75
67	From Isolated Ions to Multilayer Functional Materials Using Ion Soft Landing. Angewandte Chemie - International Edition, 2018, 57, 16270-16284.	7.2	75
68	Molecular Characterization of Organosulfur Compounds in Biodiesel and Diesel Fuel Secondary Organic Aerosol. Environmental Science & Technology, 2017, 51, 119-127.	4.6	74
69	Study of Highly Selective and Efficient Thiol Derivatization Using Selenium Reagents by Mass Spectrometry. Analytical Chemistry, 2010, 82, 6926-6932.	3.2	73
70	Internal Energy Distributions Resulting from Sustained Off-Resonance Excitation in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. II. Fragmentation of the 1-Bromonaphthalene Radical Cation. Journal of Physical Chemistry A, 2000, 104, 5484-5494.	1,1	72
71	Energy transfer in collisions of peptide ions with surfaces. Journal of Chemical Physics, 2003, 119, 3413-3420.	1.2	70
72	Molecular Characterization of Biomass Burning Aerosols Using High-Resolution Mass Spectrometry. Analytical Chemistry, 2009, 81, 1512-1521.	3.2	70

#	Article	IF	CITATIONS
73	High-Speed Tandem Mass Spectrometric in Situ Imaging by Nanospray Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2013, 85, 9596-9603.	3.2	69
74	Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India. Atmospheric Chemistry and Physics, 2018, 18, 2461-2480.	1.9	69
75	Soft―and reactive landing of ions onto surfaces: Concepts and applications. Mass Spectrometry Reviews, 2016, 35, 439-479.	2.8	67
76	Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung. Scientific Reports, 2017, 7, 40555.	1.6	67
77	Soft landing of bare nanoparticles with controlled size, composition, and morphology. Nanoscale, 2015, 7, 3491-3503.	2.8	65
78	Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry. Analytical Chemistry, 2012, 84, 1517-1525.	3.2	64
79	Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene. Atmospheric Chemistry and Physics, 2018, 18, 1643-1652.	1.9	64
80	Is the tropylium ion (Tr+) formed from toluene at its thermochemical threshold?. International Journal of Mass Spectrometry and Ion Processes, 1993, 125, R7-R11.	1.9	63
81	High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols. Journal of Physical Chemistry A, 2015, 119, 2594-2606.	1.1	63
82	An artificial molecule of Ne2 inside C70. Chemical Physics Letters, 1998, 285, 7-9.	1.2	62
83	Molecular characterization of organic aerosol using nanospray desorption/electrospray ionization mass spectrometry: CalNex 2010 field study. Atmospheric Environment, 2013, 68, 265-272.	1.9	61
84	Towards High-Resolution Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry Coupled to Shear Force Microscopy. Journal of the American Society for Mass Spectrometry, 2018, 29, 316-322.	1.2	61
85	Design and Performance of an Instrument for Soft Landing of Biomolecular Ions on Surfaces. Analytical Chemistry, 2007, 79, 6566-6574.	3.2	60
86	Helical Peptide Arrays on Selfâ€Assembled Monolayer Surfaces through Soft and Reactive Landing of Mass‧elected Ions. Angewandte Chemie - International Edition, 2008, 47, 6678-6680.	7.2	60
87	Preparation and in Situ Characterization of Surfaces Using Soft Landing in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Analytical Chemistry, 2005, 77, 3452-3460.	3.2	59
88	Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions. ACS Nano, 2012, 6, 573-582.	7.3	59
89	Soft-Landing of Peptides onto Self-Assembled Monolayer Surfacesâ€. Journal of Physical Chemistry A, 2006, 110, 1678-1687.	1.1	58
90	Imaging and Analysis of Isomeric Unsaturated Lipids through Online Photochemical Derivatization of Carbon–Carbon Double Bonds**. Angewandte Chemie - International Edition, 2021, 60, 7559-7563.	7.2	58

#	Article	IF	CITATIONS
91	Covalent Immobilization of Peptides on Self-Assembled Monolayer Surfaces Using Soft-Landing of Mass-Selected Ions. Journal of the American Chemical Society, 2007, 129, 8682-8683.	6.6	57
92	Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography. Analytical Chemistry, 2017, 89, 1131-1137.	3.2	57
93	Fragmentation energetics of small peptides from multiple-collision activation and surface-induced dissociation in FT-ICR MS. International Journal of Mass Spectrometry, 2002, 219, 189-201.	0.7	56
94	Study of Electrochemical Reactions Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2012, 84, 5737-5743.	3.2	56
95	High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water-Soluble Organic Aerosols Collected with a Particle into Liquid Sampler. Analytical Chemistry, 2010, 82, 8010-8016.	3.2	55
96	Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling. Environmental Science & Technology, 2015, 49, 8523-8530.	4.6	55
97	Photochemistry of Products of the Aqueous Reaction of Methylglyoxal with Ammonium Sulfate. ACS Earth and Space Chemistry, 2017, 1, 522-532.	1.2	55
98	Quantitative Extraction and Mass Spectrometry Analysis at a Single-Cell Level. Analytical Chemistry, 2018, 90, 7937-7945.	3.2	54
99	Design of a shear-thinning recoverable peptide hydrogel from native sequences and application for influenza H1N1 vaccine adjuvant. Soft Matter, 2011, 7, 8905.	1.2	53
100	Energetics and Dynamics of Fragmentation of Protonated Leucine Enkephalin from Time- and Energy-Resolved Surface-Induced Dissociation Studiesâ€. Journal of Physical Chemistry A, 2006, 110, 8554-8562.	1.1	52
101	Is Dissociation of Peptide Radical Cations an Ergodic Process?. Journal of the American Chemical Society, 2007, 129, 9598-9599.	6.6	52
102	Chemical Analysis of Complex Organic Mixtures Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2012, 84, 7179-7187.	3.2	52
103	Kinetic energy release distributions and evaporation energies for metastable fullerene ions. Chemical Physics Letters, 1999, 303, 379-386.	1.2	51
104	On the efficiency of energy transfer in collisional activation of small peptides. Journal of Chemical Physics, 2002, 116, 4302-4310.	1.2	51
105	Isolation, Characterization of an Intermediate in an Oxygen Atom-Transfer Reaction, and the Determination of the Bond Dissociation Energy. Journal of the American Chemical Society, 2004, 126, 8604-8605.	6.6	51
106	Fragmentation of <i>α</i> -radical cations of arginine-containing peptides. Journal of the American Society for Mass Spectrometry, 2010, 21, 511-521.	1.2	51
107	Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene Oxidized with Ozone, Hydroxyl Radical, and Nitrate Radical. Journal of Physical Chemistry A, 2017, 121, 1298-1309.	1.1	51
108	Energetics and Dynamics of Electron Transfer and Proton Transfer in Dissociation of MetalIII(salen)â^Peptide Complexes in the Gas Phase. Journal of the American Chemical Society, 2008, 130, 3218-3230.	6.6	50

#	Article	IF	CITATIONS
109	The Theoretical Basis of the Kinetic Method from the Point of View of Finite Heat Bath Theory. Journal of Physical Chemistry A, 2000, 104, 8829-8837.	1.1	49
110	Fragmentation energetics for angiotensin II and its analogs from time- and energy-resolved surface-induced dissociation studies. International Journal of Mass Spectrometry, 2004, 234, 89-99.	0.7	49
111	Monodisperse Au ₁₁ Clusters Prepared by Soft Landing of Mass Selected Ions. Analytical Chemistry, 2011, 83, 8069-8072.	3.2	49
112	Spatially resolved analysis of glycolipids and metabolites in living Synechococcus sp. PCC 7002 using nanospray desorption electrospray ionization. Analyst, The, 2013, 138, 1971.	1.7	48
113	Three-dimensional imaging of lipids and metabolites in tissues by nanospray desorption electrospray ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2015, 407, 2063-2071.	1.9	47
114	Understanding ligand effects in gold clusters using mass spectrometry. Analyst, The, 2016, 141, 3573-3589.	1.7	47
115	Energetics of selective cleavage at acidic residues studied by time- and energy-resolved surface-induced dissociation in FT-ICR MS. International Journal of Mass Spectrometry, 2003, 222, 313-327.	0.7	45
116	Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol. Environmental Science & Technology, 2011, 45, 1257-1263.	4.6	44
117	Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols. Environmental Science & Technology, 2012, 46, 8315-8324.	4.6	44
118	Design and performance of a high-flux electrospray ionization source for ion soft landing. Analyst, The, 2015, 140, 2957-2963.	1.7	44
119	Lipid Coverage in Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Mouse Lung Tissues. Analytical Chemistry, 2019, 91, 11629-11635.	3.2	44
120	Kinetic energy releases upon dissociation of endohedral fullerene cations. Chemical Physics Letters, 1995, 242, 249-252.	1.2	43
121	Self-organizing layers from complex molecular anions. Nature Communications, 2018, 9, 1889.	5.8	43
122	Coverage-Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-Selected Ions. Journal of Physical Chemistry C, 2012, 116, 24977-24986.	1.5	42
123	Fragmentation Energetics of Clusters Relevant to Atmospheric New Particle Formation. Journal of the American Chemical Society, 2013, 135, 3276-3285.	6.6	42
124	First Observation of Charge Reduction and Desorption Kinetics of Multiply Protonated Peptides Soft Landed onto Self-Assembled Monolayer Surfaces. Journal of Physical Chemistry C, 2007, 111, 18220-18225.	1.5	41
125	New mass spectrometry techniques for studying physical chemistry of atmospheric heterogeneous processes. International Reviews in Physical Chemistry, 2013, 32, 128-170.	0.9	41
126	Molecular characterization of S―and Nâ€containing organic constituents in ambient aerosols by negative ion mode highâ€resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,706.	1.2	41

#	Article	IF	CITATIONS
127	Formation of Peptide Radical Ions through Dissociative Electron Transfer in Ternary Metal—Ligand—Peptide Complexes. European Journal of Mass Spectrometry, 2011, 17, 543-556.	0.5	40
128	In Situ Reactivity and TOF-SIMS Analysis of Surfaces Prepared by Soft and Reactive Landing of Mass-Selected Ions. Analytical Chemistry, 2010, 82, 5718-5727.	3.2	39
129	In situ Studies of Soft- and Reactive Landing of Mass-Selected Ions Using Infrared Reflection Absorption Spectroscopy. Analytical Chemistry, 2009, 81, 7302-7308.	3.2	38
130	Direct aqueous photochemistry of isoprene high-NOx secondary organic aerosol. Physical Chemistry Chemical Physics, 2012, 14, 9702.	1.3	38
131	Kinetic energy release for metastable fullerene ions. International Journal of Mass Spectrometry, 1999, 185-187, 813-823.	0.7	37
132	IonCCDâ,,¢ for Direct Position-Sensitive Charged-Particle Detection: from Electrons and keV Ions to Hyperthermal Biomolecular Ions. Journal of the American Society for Mass Spectrometry, 2011, 22, 612-623.	1.2	36
133	Peptide Radical Cations. , 2006, , 301-335.		35
134	Charge retention by peptide ions soft-landed onto self-assembled monolayer surfaces. International Journal of Mass Spectrometry, 2007, 265, 237-243.	0.7	35
135	Preparation of Surface Organometallic Catalysts by Gasâ€Phase Ligand Stripping and Reactive Landing of Massâ€Selected Ions. Chemistry - A European Journal, 2010, 16, 14433-14438.	1.7	35
136	Soft-Landing of Co ^{III} (salen) ⁺ and Mn ^{III} (salen) ⁺ on Self-Assembled Monolayer Surfaces. Journal of Physical Chemistry C, 2010, 114, 5305-5311.	1.5	35
137	Redox chemistry in thin layers of organometallic complexes prepared using ion soft landing. Physical Chemistry Chemical Physics, 2011, 13, 267-275.	1.3	34
138	Size-dependent stability toward dissociation and ligand binding energies of phosphine ligated gold cluster ions. Chemical Science, 2014, 5, 3275.	3.7	34
139	Polyoxometalateâ€Graphene Nanocomposite Modified Electrode for Electrocatalytic Detection of Ascorbic Acid. Electroanalysis, 2014, 26, 178-183.	1.5	34
140	Controlling the Charge State and Redox Properties of Supported Polyoxometalates via Soft Landing of Mass-Selected Ions. Journal of Physical Chemistry C, 2014, 118, 27611-27622.	1.5	32
141	Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen. Nanoscale, 2015, 7, 12379-12391.	2.8	32
142	Design and Performance of a Dual-Polarity Instrument for Ion Soft Landing. Analytical Chemistry, 2019, 91, 5904-5912.	3.2	32
143	Formation, Isomerization, and Dissociation of α-Carbon-Centered and π-Centered Glycylglycyltryptophan Radical Cations. Journal of Physical Chemistry B, 2010, 114, 2270-2280.	1.2	31
144	Soft Landing of Complex lons for Studies in Catalysis and Energy Storage. Journal of Physical Chemistry C, 2016, 120, 23305-23322.	1.5	31

#	Article	IF	CITATIONS
145	Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry. Chemical Communications, 2017, 53, 7389-7392.	2.2	31
146	High-resolution imaging and identification of biomolecules using Nano-DESI coupled to ion mobility spectrometry. Analytica Chimica Acta, 2021, 1186, 339085.	2.6	31
147	Time-resolved metastable fractions of fullerenes. Chemical Physics Letters, 1997, 277, 564-570.	1.2	30
148	Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry. Environmental Science & amp; Technology, 2015, 49, 13304-13313.	4.6	30
149	Dynamics of Protonated Peptide Ion Collisions with Organic Surfaces: Consonance of Simulation and Experiment. Journal of Physical Chemistry Letters, 2016, 7, 3142-3150.	2.1	30
150	On the Relative Stability of Singly Protonated des-Arg1- and des-Arg9-Bradykininsâ€. Journal of Physical Chemistry A, 2002, 106, 9832-9836.	1.1	29
151	Mechanisms of peptide fragmentation from time- and energy-resolved surface-induced dissociation studies: Dissociation of angiotensin analogs. International Journal of Mass Spectrometry, 2006, 249-250, 462-472.	0.7	29
152	Effect of the surface on charge reduction and desorption kinetics of soft landed peptide ions. Journal of the American Society for Mass Spectrometry, 2009, 20, 901-906.	1.2	29
153	Controlling the Activity and Stability of Electrochemical Interfaces Using Atom-by-Atom Metal Substitution of Redox Species. ACS Nano, 2019, 13, 458-466.	7.3	29
154	Time-resolved appearance energies for fragment ions from C60. Chemical Physics Letters, 1996, 252, 277-280.	1.2	28
155	Energetics and Dynamics of Peptide Fragmentation from Multiple-Collision Activation and Surface-Induced Dissociation Studies. European Journal of Mass Spectrometry, 2004, 10, 259-267.	0.5	28
156	Is the resilience of C+60 towards decomposition a question of time?. Chemical Physics Letters, 1992, 200, 406-410.	1.2	27
157	Threshold formation of benzylium (Bz+) and tropylium (Tr+) from toluene. Nonstatistical behavior in Franck-Condon gaps. The Journal of Physical Chemistry, 1993, 97, 12291-12295.	2.9	27
158	Mass spectrometric study of unimolecular decompositions of endohedral fullerenes. International Journal of Mass Spectrometry, 1999, 185-187, 61-73.	0.7	27
159	Entropy Is the Major Driving Force for Fragmentation of Proteins and Proteinâ^'Ligand Complexes in the Gas Phase. Journal of Physical Chemistry A, 2003, 107, 5836-5839.	1.1	27
160	Liquid–liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors. Atmospheric Chemistry and Physics, 2019, 19, 12515-12529.	1.9	27
161	Time-resolved dissociation of bromonaphthalene ion studied by TPIMS and TRPD. Heat of formation of naphthyl ion. Journal of the American Chemical Society, 1993, 115, 7402-7406.	6.6	26
162	Imaging of triglycerides in tissues using nanospray desorption electrospray ionization (Nano-DESI) mass spectrometry. International Journal of Mass Spectrometry, 2020, 448, 116269.	0.7	26

#	Article	IF	CITATIONS
163	An Integrated Microfluidic Probe for Mass Spectrometry Imaging of Biological Samples**. Angewandte Chemie - International Edition, 2020, 59, 22388-22391.	7.2	26
164	Energetics and Dynamics of the Fragmentation Reactions of Protonated Peptides Containing Methionine Sulfoxide or Aspartic Acid via Energy- and Time-Resolved Surface Induced Dissociation. Journal of Physical Chemistry A, 2007, 111, 10580-10588.	1,1	25
165	Experimental and Theoretical Studies of the Structures and Interactions of Vancomycin Antibiotics with Cell Wall Analogues. Journal of the American Chemical Society, 2008, 130, 13013-13022.	6.6	25
166	Kinetics for tautomerizations and dissociations of triglycine radical cations. Journal of the American Society for Mass Spectrometry, 2009, 20, 996-1005.	1.2	25
167	Effect of the surface on the secondary structure of soft landed peptide ions. Physical Chemistry Chemical Physics, 2010, 12, 12802.	1.3	25
168	Cationic gold clusters ligated with differently substituted phosphines: effect of substitution on ligand reactivity and binding. Physical Chemistry Chemical Physics, 2015, 17, 14636-14646.	1.3	25
169	In Situ Infrared Spectroelectrochemistry for Understanding Structural Transformations of Precisely Defined Ions at Electrochemical Interfaces. Analytical Chemistry, 2018, 90, 10935-10942.	3.2	25
170	An approach toward quantification of organic compounds in complex environmental samples using high-resolution electrospray ionization mass spectrometry. Analytical Methods, 2013, 5, 72-80.	1.3	24
171	Properties of perhalogenated { <i>closo</i> -B ₁₀ } and { <i>closo</i> -B ₁₁ } multiply charged anions and a critical comparison with { <i>closo</i> -B ₁₂ } in the gas and the condensed phase. Physical Chemistry Chemical Physics, 2019, 21, 5903-5915.	1.3	24
172	Discovery and Supramolecular Interactions of Neutral Palladiumâ€Oxo Clusters Pd ₁₆ and Pd ₂₄ . Angewandte Chemie - International Edition, 2021, 60, 3632-3639.	7.2	24
173	Imaging and Analysis of Isomeric Unsaturated Lipids through Online Photochemical Derivatization of Carbon–Carbon Double Bonds**. Angewandte Chemie, 2021, 133, 7637-7641.	1.6	24
174	The Effect of the Secondary Structure on Dissociation of Peptide Radical Cations: Fragmentation of Angiotensin III and Its Analogues. Journal of Physical Chemistry B, 2008, 112, 12468-12478.	1.2	23
175	In situ solid-state electrochemistry of mass-selected ions at well-defined electrode–electrolyte interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13324-13329.	3.3	23
176	Spatial Segmentation of Mass Spectrometry Imaging Data by Combining Multivariate Clustering and Univariate Thresholding. Analytical Chemistry, 2021, 93, 3477-3485.	3.2	23
177	Kinetic energy releases and electron-induced decay of C60z+. European Journal of Mass Spectrometry, 1999, 5, 477.	0.7	22
178	Peptide ozonolysis: Product structures and relative reactivities for oxidation of tyrosine and histidine residues. Journal of the American Society for Mass Spectrometry, 2006, 17, 1289-1298.	1.2	22
179	Effect of the Basic Residue on the Energetics, Dynamics, and Mechanisms of Gas-Phase Fragmentation of Protonated Peptides. Journal of the American Chemical Society, 2010, 132, 16006-16016.	6.6	22
180	Ion Mobility-Mass Spectrometry Imaging Workflow. Journal of the American Society for Mass Spectrometry, 2020, 31, 2437-2442.	1.2	22

#	Article	IF	CITATIONS
181	Multiplexing of Electrospray Ionization Sources Using Orthogonal Injection into an Electrodynamic Ion Funnel. Analytical Chemistry, 2021, 93, 11576-11584.	3.2	22
182	Skeletal muscle undergoes fiber type metabolic switch without myosin heavy chain switch in response to defective fatty acid oxidation. Molecular Metabolism, 2022, 59, 101456.	3.0	22
183	Proteoformâ€5elective Imaging of Tissues Using Mass Spectrometry**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
184	Protein identification via surface-induced dissociation in an FT-ICR mass spectrometer and a patchwork sequencing approach. Journal of the American Society for Mass Spectrometry, 2006, 17, 700-709.	1.2	21
185	Observing the real time formation of phosphine-ligated gold clusters by electrospray ionization mass spectrometry. Physical Chemistry Chemical Physics, 2017, 19, 17187-17198.	1.3	21
186	Secondary organic aerosol from atmospheric photooxidationÂofÂindole. Atmospheric Chemistry and Physics, 2017, 17, 11605-11621.	1.9	21
187	Direct functionalization of Câ [^] H bonds by electrophilic anions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23374-23379.	3.3	21
188	Visualization of high resolution spatial mass spectrometric data during acquisition. , 2012, 2012, 5545-8.		20
189	Is n = 60 a magic number for C+n clusters or part of a magic shell?. International Journal of Mass Spectrometry and Ion Processes, 1994, 138, 95-106.	1.9	19
190	Surface-Induced Dissociation of the Benzene Molecular Cation in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Journal of Physical Chemistry A, 2002, 106, 2781-2788.	1.1	19
191	Influence of the Charge State on the Structures and Interactions of Vancomycin Antibiotics with Cellâ€Wall Analogue Peptides: Experimental and Theoretical Studies. Chemistry - A European Journal, 2009, 15, 2081-2090.	1.7	19
192	Probing molecular associations of fieldâ€collected and laboratoryâ€generated SOA with nanoâ€DESI highâ€resolution mass spectrometry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1042-1051.	1.2	19
193	Dissociation of noncovalent protein complexes by triple quadrupole tandem mass spectrometry: comparison of Monte Carlo simulation and experiment. International Journal of Mass Spectrometry, 2002, 221, 245-262.	0.7	18
194	Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene in the Presence of Hydrogen Peroxide or Inorganic Salts. ACS Earth and Space Chemistry, 2019, 3, 2736-2746.	1.2	18
195	Design and Performance of a Soft-Landing Instrument for Fragment Ion Deposition. Analytical Chemistry, 2021, 93, 14489-14496.	3.2	18
196	Time-resolved kinetic energy releases for C60·+ → C58·+ + C2. International Journal of Mass Spectrometry and Ion Processes, 1997, 161, L7-L11.	1.9	17
197	Surface-Induced Dissociation of Ions Produced by Matrix-Assisted Laser Desorption/Ionization in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Analytical Chemistry, 2004, 76, 351-356.	3.2	17
198	Trp53 deficient mice predisposed to preterm birth display region-specific lipid alterations at the embryo implantation site. Scientific Reports, 2016, 6, 33023.	1.6	17

#	Article	IF	CITATIONS
199	A Role for 2-Methyl Pyrrole in the Browning of 4-Oxopentanal and Limonene Secondary Organic Aerosol. Environmental Science & Technology, 2017, 51, 11048-11056.	4.6	17
200	Gas-Phase Fragmentation of Host-Guest Complexes of Cyclodextrins and Polyoxometalates. Journal of the American Society for Mass Spectrometry, 2019, 30, 1934-1945.	1.2	17
201	Relative Proton Affinities from Kinetic Energy Release Distributions for Dissociation of Proton-Bound Dimers. Journal of Physical Chemistry A, 2002, 106, 12051-12057.	1.1	16
202	Protein Structure and Folding in the Gas Phase: Ubiquitin and Cytochrome c. , 2006, , 177-212.		16
203	Collision-induced dissociation of [4Fe-4S] cubane cluster complexes: [Fe4S4Cl4â~'x(SC2H5)x]2â~'/1â~' (x=0–4). International Journal of Mass Spectrometry, 2006, 255-256, 102-110.	0.7	16
204	Discovery of a Neutral 40-Pd ^{II} -Oxo Molecular Disk, [Pd ₄₀ O ₂₄ (OH) ₁₆ {(CH ₃) ₂ AsO ₂ }- Synthesis, Structural Characterization, and Catalytic Studies. Inorganic Chemistry, 2021, 60, 17339-17347.	sub>16 </td <td> sub>]: 16</td>	sub>]: 16
205	High-Throughput Nano-DESI Mass Spectrometry Imaging of Biological Tissues Using an Integrated Microfluidic Probe. Analytical Chemistry, 2022, 94, 9690-9696.	3.2	16
206	Mechanistic Examination of C _β –C _γ Bond Cleavages of Tryptophan Residues during Dissociations of Molecular Peptide Radical Cations. Journal of Physical Chemistry A, 2013, 117, 1059-1068.	1.1	15
207	Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions. Faraday Discussions, 2015, 184, 339-357.	1.6	15
208	Charge retention of soft-landed phosphotungstate Keggin anions on self-assembled monolayers. Physical Chemistry Chemical Physics, 2016, 18, 9021-9028.	1.3	15
209	CpG preconditioning reduces accumulation of lysophosphatidylcholine in ischemic brain tissue after middle cerebral artery occlusion. Analytical and Bioanalytical Chemistry, 2021, 413, 2735-2745.	1.9	15
210	Competition between covalent and noncovalent bond cleavages in dissociation of phosphopeptide-amine complexes. Physical Chemistry Chemical Physics, 2011, 13, 6936.	1.3	14
211	Characterization of the Ion Beam Focusing in a Mass Spectrometer Using an IonCCDâ,,¢ Detector. Journal of the American Society for Mass Spectrometry, 2011, 22, 1388-1394.	1.2	14
212	Synthesis and Characterization of Gold Clusters Ligated with 1,3â€Bis(dicyclohexylphosphino)propane. ChemPlusChem, 2013, 78, 1033-1039.	1.3	14
213	Investigating the Synthesis of Ligated Metal Clusters in Solution Using a Flow Reactor and Electrospray Ionization Mass Spectrometry. Journal of Physical Chemistry A, 2014, 118, 8464-8470.	1.1	14
214	Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering and ion soft landing. Journal of Chemical Physics, 2016, 145, 174701.	1.2	14
215	Molecular Characterization of Atmospheric Brown Carbon. ACS Symposium Series, 2018, , 261-274.	0.5	14
216	Effect of the basic residue on the energetics and dynamics of dissociation of phosphopeptides. International Journal of Mass Spectrometry, 2012, 330-332, 295-301.	0.7	13

#	Article	IF	CITATIONS
217	Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation. Journal of the American Society for Mass Spectrometry, 2013, 24, 1385-1395.	1.2	13
218	Dynamics of energy transfer and soft-landing in collisions of protonated dialanine with perfluorinated self-assembled monolayer surfaces. Physical Chemistry Chemical Physics, 2014, 16, 23769-23778.	1.3	13
219	Secondary Structures of Ubiquitin Ions Soft-Landed onto Self-Assembled Monolayer Surfaces. Journal of Physical Chemistry B, 2016, 120, 4927-4936.	1.2	13
220	DRILL Interface Makes Ion Soft Landing Broadly Accessible for Energy Science and Applications. Batteries and Supercaps, 2018, 1, 97-101.	2.4	13
221	Influence of Interligand Interactions and Core-Charge Distribution on Gold Cluster Stability: Enthalpy Versus Entropy. Journal of Physical Chemistry C, 2019, 123, 24899-24911.	1.5	13
222	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
223	Gas-Phase Fragmentation Pathways of Mixed Addenda Keggin Anions: PMo12-nWnO40 3– (n = 0–12). Journal of the American Society for Mass Spectrometry, 2015, 26, 1027-1035.	1.2	12
224	Properties of gaseous <i>closo</i> -[B ₆ X ₆] ^{2â^'} dianions (X = Cl, Br,) Tj ET	Qq0 0 rf	3BT /Overlock
225	Preparative Mass Spectrometry Using a Rotatingâ€Wall Mass Analyzer. Angewandte Chemie - International Edition, 2020, 59, 7711-7716.	7.2	11
226	Ion Mobility Spectrometry Characterization of the Intermediate Hydrogen-Containing Gold Cluster Au ₇ (PPh ₃) ₇ 5 ²⁺ . Journal of Physical Chemistry Letters, 2021, 12, 2502-2508.	2.1	11
227	Metastable fractions in fullerenes. Organic Mass Spectrometry, 1993, 28, 1001-1003.	1.3	10
228	Electron Capture Dissociation and Other Ion-Electron Fragmentation Reactions. , 2006, , 475-517.		10
229	Evaluation of the influence of amino acid composition on the propensity for collision-induced dissociation of model peptides using molecular dynamics simulations. Journal of the American Society for Mass Spectrometry, 2007, 18, 1625-1637.	1.2	10
230	Fragmentation mechanisms of oxidized peptides elucidated by SID, RRKM modeling, and molecular dynamics. Journal of the American Society for Mass Spectrometry, 2009, 20, 1579-1592.	1.2	10
231	Soft landing of mass-selected gold clusters: Influence of ion and ligand on charge retention and reactivity. International Journal of Mass Spectrometry, 2015, 377, 205-213.	0.7	10
232	Von isolierten Ionen zu mehrschichtigen funktionellen Materialien durch sanfte Landung von Ionen. Angewandte Chemie, 2018, 130, 16506-16521.	1.6	10
233	Imaging of Lipids and Metabolites Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Methods in Molecular Biology, 2015, 1203, 99-106.	0.4	10
234	Self-supervised clustering of mass spectrometry imaging data using contrastive learning. Chemical Science, 2021, 13, 90-98.	3.7	10

#	Article	IF	CITATIONS
235	Influence of heteroanion and ammonium cation size on the composition and gas-phase fragmentation of polyoxovanadates. International Journal of Mass Spectrometry, 2013, 354-355, 333-341.	0.7	9
236	Discovery and Mechanistic Studies of Facile N-Terminal C _α –C Bond Cleavages in the Dissociation of Tyrosine-Containing Peptide Radical Cations. Journal of Physical Chemistry B, 2014, 118, 4273-4281.	1.2	9
237	Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces. Journal of the American Society for Mass Spectrometry, 2017, 28, 1304-1312.	1.2	9
238	Discovery and Supramolecular Interactions of Neutral Palladiumâ€Oxo Clusters Pd 16 and Pd 24. Angewandte Chemie, 2021, 133, 3676-3683.	1.6	9
239	Catalytic Pyrolysis of Lignin Model Compounds (Pyrocatechol, Guaiacol, Vanillic and Ferulic Acids) over Nanoceria Catalyst for Biomass Conversion. Applied Sciences (Switzerland), 2021, 11, 7205.	1.3	9
240	Surface Modification Using Reactive Landing of Mass-Selected Ions. Particle Acceleration and Detection, 2009, , 37-65.	0.3	9
241	lon source trapping in conjunction with two sector mass spectrometry: time-resolved CAD. International Journal of Mass Spectrometry and Ion Processes, 1994, 133, L11-L14.	1.9	8
242	Photodissociation of Biomolecule Ions: Progress, Possibilities, and Perspectives Coming from Small-Ion Models. , 2006, , 337-377.		8
243	Ion Soft Landing: Instrumentation, Phenomena, and Applications. , 2006, , 433-474.		8
244	Energy and Entropy Effects in Gas-Phase Dissociation of Peptides and Proteins. , 2006, , 619-665.		8
245	Effect of the surface morphology on the energy transfer in ion–surface collisions. International Journal of Mass Spectrometry, 2007, 265, 124-129.	0.7	8
246	COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols. Environmental Science & amp; Technology, 2012, 46, 6048-6055.	4.6	8
247	Ion–surface collisions in mass spectrometry: Where analytical chemistry meets surface science. International Journal of Mass Spectrometry, 2015, 377, 188-200.	0.7	8
248	Statistical detection of differentially abundant ions in mass spectrometry-based imaging experiments with complex designs. International Journal of Mass Spectrometry, 2019, 437, 49-57.	0.7	8
249	Deep Learning Approach for Dynamic Sparse Sampling for High-Throughput Mass Spectrometry Imaging. IS&T International Symposium on Electronic Imaging, 2021, 33, 290-1-290-7.	0.3	8
250	Electronic structure and fragmentation properties of [Fe4S4(SEt)4â^'x(SSEt)x]2â^'. International Journal of Mass Spectrometry, 2007, 263, 260-266.	0.7	7
251	Energetics and dynamics of dissociation of deprotonated peptides: Fragmentation of angiotensin analogs. International Journal of Mass Spectrometry, 2011, 308, 275-280.	0.7	7
252	Energy and entropy effects in dissociation of peptide radical anions. International Journal of Mass Spectrometry, 2012, 316-318, 251-258.	0.7	7

#	Article	IF	CITATIONS
253	Charge retention by organometallic dications on self-assembled monolayer surfaces. International Journal of Mass Spectrometry, 2014, 365-366, 187-193.	0.7	7
254	Reactive Landing of Dendrimer lons onto Activated Self-Assembled Monolayer Surfaces. Journal of Physical Chemistry C, 2014, 118, 2602-2608.	1.5	7
255	Designing New Metal Chalcogenide Nanoclusters through Atomâ€byâ€Atom Substitution. Small, 2021, 17, e2002927.	5.2	7
256	Experimental and computational studies of the macrocyclic effect of an auxiliary ligand on electron and proton transfers within ternary copper(II)-Histidine complexes. Journal of the American Society for Mass Spectrometry, 2009, 20, 972-984.	1.2	6
257	Reactive Uptake of Ammonia by Biogenic and Anthropogenic Organic Aerosols. ACS Symposium Series, 2018, , 127-147.	0.5	6
258	Principles of Operation of a Rotating Wall Mass Analyzer for Preparative Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1875-1884.	1.2	6
259	Enhancement of lipid signals with ammonium fluoride in negative mode Nano-DESI mass spectrometry imaging. International Journal of Mass Spectrometry, 2022, 478, 116859.	0.7	6
260	Potentiometric Determination of Zinc in Supplement Tablets Using a Ca-Ion Selective Electrode. Journal of Chemical Education, 2022, 99, 2661-2666.	1.1	6
261	Relative proton affinities from kinetic energy release distributions for dissociation of proton-bound dimers. International Journal of Mass Spectrometry, 2004, 233, 223-231.	0.7	5
262	Chemical Dynamics Simulations of Energy Transfer and Unimolecular Decomposition in Collision-Induced Dissociation (CID) and Surface-Induced Dissociation (SID). , 2006, , 379-432.		5
263	Towards Adaptive, Streaming Analysis of X-ray Tomography Data. Synchrotron Radiation News, 2015, 28, 10-14.	0.2	5
264	New approach for studying slow fragmentation kinetics in FT-ICR: Surface-induced dissociation combined with resonant ejection. International Journal of Mass Spectrometry, 2015, 378, 160-168.	0.7	5
265	Gas phase fragmentation of adducts between dioxygen and closo-borate radical anions. International Journal of Mass Spectrometry, 2019, 436, 71-78.	0.7	5
266	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
267	Surface-Induced Dissociation: A Unique Tool for Studying Energetics and Kinetics of the Gas-Phase Fragmentation of Large Ions. European Journal of Mass Spectrometry, 2015, 21, 377-389.	0.5	4
268	An Integrated Microfluidic Probe for Mass Spectrometry Imaging of Biological Samples**. Angewandte Chemie, 2020, 132, 22574-22577.	1.6	4
269	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
270	Mass Spectrometric Studies of Fullerene Ion Beams. Israel Journal of Chemistry, 1997, 37, 467-474.	1.0	3

#	Article	IF	CITATIONS
271	Intramolecular Vibrational Energy Redistribution and Ergodicity of Biomolecular Dissociation. , 2006, , 239-275.		3
272	Probing the Electronic Structure of FeS Clusters: Ubiquitous Electron Transfer Centers in Metalloproteins Using Anion Photoelectron Spectroscopy in the Gas Phase. , 2006, , 63-117.		3
273	Velo and REXAN — Integrated data management and high speed analysis for experimental facilities. , 2012, , .		3
274	Electroosmotic extraction coupled to mass spectrometry analysis of metabolites in live cells. Methods in Enzymology, 2019, 628, 293-307.	0.4	3
275	Quantitative Mass Spectrometry Imaging of Molecules in Biological Systems. , 2017, , 43-72.		3
276	Atomically Precise Core-Tailored Metal Chalcogenide Nanoclusters: Tuning the Electronic Structure and Magnetic Properties. Journal of Physical Chemistry C, 2022, 126, 6512-6522.	1.5	3
277	In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions. Journal of Visualized Experiments, 2014, , .	0.2	2
278	Effect of basic residue on the kinetics of peptide fragmentation examined using surface-induced dissociation combined with resonant ejection. International Journal of Mass Spectrometry, 2015, 391, 24-30.	0.7	2
279	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
280	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
281	The Characterization of Living Bacterial Colonies Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Methods in Molecular Biology, 2014, 1151, 199-208.	0.4	2
282	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
283	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
284	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
285	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
286	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
287	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
288	Preparative Mass Spectrometry Using a Rotatingâ€Wall Mass Analyzer. Angewandte Chemie, 2020, 132, 7785-7790.	1.6	1

#	Article	IF	CITATIONS
289	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
290	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
291	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
292	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
293	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
294	Collisional Activation of Peptide lons in FT-ICR Mass Spectrometry. ChemInform, 2004, 35, no.	0.1	0
295	Energetics and Dynamics of Peptide Fragmentation from Multiple-Collision Activation and Surface-Induced Dissociation Studies. ChemInform, 2004, 35, no.	0.1	0
296	Biography of Chava Lifshitz. Journal of Physical Chemistry A, 2006, 110, 8235-8237.	1.1	0
297	Thermochemistry Studies of Biomolecules. , 2006, , 565-617.		0
298	Fragmentation and growth energetics of clusters relevant to new particle formation. , 2013, , .		0
299	Enabling re-executable workflows with near-realtime visualization, provenance capture and advanced querying for mass spectrometry data. , 2016, , .		0
300	Surface Ionization and Soft Landing Techniques in Mass Spectrometry. , 2017, , 344-352.		0
301	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
302	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
303	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
304	35th ASMS Asilomar Conference on Mass Spectrometry. Mass Spectrometry Imaging: New Developments and Applications. Journal of the American Society for Mass Spectrometry, 2020, 31, 2390-2391.	1.2	0
305	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
306	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0

#	Article	IF	CITATIONS
307	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
308	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
309	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
310	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
311	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
312	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
313	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
314	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
315	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
316	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
317	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
318	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
319	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
320	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
321	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
322	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
323	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
324	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0

#	Article	IF	CITATIONS
325	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	Ο
326	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
327	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	Ο
328	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
329	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
330	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0
331	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
332	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
333	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
334	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
335	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
336	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
337	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	Ο
338	Innentitelbild: Imaging and Analysis of Isomeric Unsaturated Lipids through Online Photochemical Derivatization of Carbon–Carbon Double Bonds (Angew. Chem. 14/2021). Angewandte Chemie, 2021, 133, 7526-7526.	1.6	0
339	Surface Induced Dissociation and Soft Landing Techniques in Mass Spectrometry. , 2010, , 2778-2787.		0
340	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
341	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	Ο
342	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0

#	Article	IF	CITATIONS
343	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
344	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
345	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
346	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
347	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
348	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
349	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	Ο
350	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
351	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
352	Proteoformâ \in Selective Imaging of Tissues Using Mass Spectrometry. Angewandte Chemie, 0, , .	1.6	0
353	Innenrücktitelbild: Proteoformâ€Selective Imaging of Tissues Using Mass Spectrometry (Angew. Chem.) Tj ETC	2q110.78	4314 rgBT /C