
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4565668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Safety and Feasibility of Research Lumbar Puncture in Huntington's Disease: The HDClarity Cohort and Bioresource. Journal of Huntington's Disease, 2022, 11, 59-69.	1.9	7
2	234†Using functional status to aid interpretation of cUHDRS scores in patients with Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A81.1-A81.	1.9	0
3	Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components. Molecular Pharmaceutics, 2022, 19, 1669-1686.	4.6	58
4	PIAS1 modulates striatal transcription, DNA damage repair, and SUMOylation with relevance to Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
5	Development of an α-synuclein knockdown peptide and evaluation of its efficacy in Parkinson's disease models. Communications Biology, 2021, 4, 232.	4.4	18
6	The current landscape of nucleic acid therapeutics. Nature Nanotechnology, 2021, 16, 630-643.	31.5	578
7	Intracerebroventricular Administration of AAV9-PHP.B SYN1-EmGFP Induces Widespread Transgene Expression in the Mouse and Monkey Central Nervous System. Human Gene Therapy, 2021, 32, 599-615.	2.7	18
8	Human progranulin-expressing mice as a novel tool for the development of progranulin-modulating therapeutics. Neurobiology of Disease, 2021, 153, 105314.	4.4	8
9	Utility of Huntington's Disease Assessments by Disease Stage: Floor/Ceiling Effects. Frontiers in Neurology, 2021, 12, 595679.	2.4	6
10	Untargeted metabolomics and infrared ion spectroscopy identify biomarkers for pyridoxine-dependent epilepsy. Journal of Clinical Investigation, 2021, 131, .	8.2	33
11	Composite <scp>UHDRS</scp> Correlates With Progression of Imaging Biomarkers in Huntington's Disease. Movement Disorders, 2021, 36, 1259-1264.	3.9	12
12	Age-related mitochondrial alterations in brain and skeletal muscle of the YAC128 model of Huntington disease. Npj Aging and Mechanisms of Disease, 2021, 7, 26.	4.5	8
13	A novel mouse model for pyridoxine-dependent epilepsy due to antiquitin deficiency. Human Molecular Genetics, 2020, 29, 3266-3284.	2.9	15
14	Spontaneous, solvent-free entrapment of siRNA within lipid nanoparticles. Nanoscale, 2020, 12, 23959-23966.	5.6	36
15	Longitudinal Structural <scp>MRI</scp> in Neurologically Healthy Adults. Journal of Magnetic Resonance Imaging, 2020, 52, 1385-1399.	3.4	5
16	Antisense oligonucleotides for neurodegeneration. Science, 2020, 367, 1428-1429.	12.6	62
17	Huntingtin-Lowering Therapies for Huntington Disease. JAMA Neurology, 2020, 77, 764.	9.0	39
18	Longitudinal expression changes are weak correlates of disease progression in Huntington's disease. Brain Communications, 2020, 2, fcaa172.	3.3	6

#	Article	IF	CITATIONS
19	Association of CAG Repeats With Long-term Progression in Huntington Disease. JAMA Neurology, 2019, 76, 1375.	9.0	44
20	A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. EBioMedicine, 2019, 48, 568-580.	6.1	104
21	Isolating cells from adult murine brain for validation of cell-type specific cre-mediated deletion. Journal of Neuroscience Methods, 2019, 328, 108422.	2.5	1
22	Movement Disorder Society Task Force Viewpoint: Huntington's Disease Diagnostic Categories. Movement Disorders Clinical Practice, 2019, 6, 541-546.	1.5	67
23	Targeting Huntingtin Expression in Patients with Huntington's Disease. New England Journal of Medicine, 2019, 380, 2307-2316.	27.0	493
24	Huntingtin Lowering Strategies for Disease Modification in Huntington's Disease. Neuron, 2019, 101, 801-819.	8.1	202
25	Mutant huntingtin expression in microglia is neither required nor sufficient to cause the Huntington's disease-like phenotype in BACHD mice. Human Molecular Genetics, 2019, 28, 1661-1670.	2.9	29
26	Editorial on Clinical Trial's Corner. Journal of Huntington's Disease, 2018, 7, 87-87.	1.9	1
27	Neurofilament light protein in blood predicts regional atrophy in Huntington disease. Neurology, 2018, 90, e717-e723.	1.1	65
28	Cross-sectional and longitudinal voxel-based grey matter asymmetries in Huntington's disease. NeuroImage: Clinical, 2018, 17, 312-324.	2.7	23
29	Brain Regions Showing White Matter Loss inÂHuntington's Disease Are Enriched for Synaptic and Metabolic Genes. Biological Psychiatry, 2018, 83, 456-465.	1.3	79
30	F23â€Validity, reliability, ability to detect change and meaningful within-patient change of the CUHDRS. , 2018, , .		5
31	D10â€Neurofilament light protein in blood predicts regional atrophy in huntington's disease. , 2018, , .		0
32	E11â€Compensation in huntington's disease. , 2018, , .		0
33	J03â€Partial lowering of total huntingtin levels to treat adults with huntington's disease (hd): potential benefits and theoretical risks from human studies and animal models. , 2018, , .		0
34	C01â€Glutamine codon usage and somatic mosaicism of the HTT cag repeat are modifiers of huntington disease severity. , 2018, , .		0
35	Transcriptional Regulation of the Huntingtin Gene. Journal of Huntington's Disease, 2018, 7, 289-296.	1.9	14
36	Altered Intracortical T1-Weighted/T2-Weighted Ratio Signal in Huntington's Disease. Frontiers in Neuroscience, 2018, 12, 805.	2.8	17

#	Article	IF	CITATIONS
37	Testing a longitudinal compensation model in premanifest Huntington's disease. Brain, 2018, 141, 2156-2166.	7.6	33
38	Murine Models of Huntington's Disease for Evaluating Therapeutics. Methods in Molecular Biology, 2018, 1780, 179-207.	0.9	9
39	Computational Analysis of Transcriptional Regulation Sites at the HTT Gene Locus. Journal of Huntington's Disease, 2018, 7, 223-237.	1.9	2
40	Executive impairment is associated with unawareness of neuropsychiatric symptoms in premanifest and early Huntington's disease Neuropsychology, 2018, 32, 958-965.	1.3	13
41	D08â€Neurofilament light protein in blood as a potential biomarker of neurodegeneration in hungtington's disease: a retrospective cohort analysis. , 2018, , .		0
42	White matter predicts functional connectivity in premanifest Huntington's disease. Annals of Clinical and Translational Neurology, 2017, 4, 106-118.	3.7	38
43	Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study. Lancet Neurology, The, 2017, 16, 701-711.	10.2	248
44	Conditional loss of progranulin in neurons is not sufficient to cause neuronal ceroid lipofuscinosis-like neuropathology in mice. Neurobiology of Disease, 2017, 106, 14-22.	4.4	17
45	KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington's disease patients. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4676-E4685.	7.1	119
46	Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington's disease: a retrospective cohort analysis. Lancet Neurology, The, 2017, 16, 601-609.	10.2	272
47	Operationalizing compensation over time in neurodegenerative disease. Brain, 2017, 140, 1158-1165.	7.6	62
48	Structural and functional brain network correlates of depressive symptoms in premanifest Huntington's disease. Human Brain Mapping, 2017, 38, 2819-2829.	3.6	28
49	Survival End Points for Huntington Disease Trials Prior to a Motor Diagnosis. JAMA Neurology, 2017, 74, 1352.	9.0	12
50	Design optimization for clinical trials in earlyâ€stage manifest Huntington's disease. Movement Disorders, 2017, 32, 1610-1619.	3.9	11
51	Motor, cognitive, and functional declines contribute to a single progressive factor in early HD. Neurology, 2017, 89, 2495-2502.	1.1	97
52	Validation of Ultrasensitive Mutant Huntingtin Detection in Human Cerebrospinal Fluid by Single Molecule Counting Immunoassay. Journal of Huntington's Disease, 2017, 6, 349-361.	1.9	48
53	p35 hemizygosity activates Akt but does not improve motor function in the YAC128 mouse model of Huntington's disease. Neuroscience, 2017, 352, 79-87.	2.3	3
54	Epidemiology of Huntington disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2017, 144, 31-46.	1.8	43

#	Article	IF	CITATIONS
55	Recommendations for the Use of Automated Gray Matter Segmentation Tools: Evidence from Huntington's Disease. Frontiers in Neurology, 2017, 8, 519.	2.4	31
56	Selective depletion of microglial progranulin in mice is not sufficient to cause neuronal ceroid lipofuscinosis or neuroinflammation. Journal of Neuroinflammation, 2017, 14, 225.	7.2	26
57	Introducing the "Clinical Trials Cornerâ€: Journal of Huntington's Disease, 2017, 6, 167-167.	1.9	0
58	Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington's disease. JCI Insight, 2017, 2, .	5.0	37
59	D21â€Longitudinal compensation in the cognitive network in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A42.1-A42.	1.9	0
60	Enhanced immune response to MMP3 stimulation in microglia expressing mutant huntingtin. Neuroscience, 2016, 325, 74-88.	2.3	34
61	Natural variation in sensoryâ€motor white matter organization influences manifestations of Huntington's disease. Human Brain Mapping, 2016, 37, 4615-4628.	3.6	18
62	Large-scale brain network abnormalities in Huntington's disease revealed by structural covariance. Human Brain Mapping, 2016, 37, 67-80.	3.6	15
63	Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington's disease. Journal of Neurochemistry, 2016, 139, 22-25.	3.9	58
64	Potential biomarkers to follow the progression and treatment response of Huntington's disease. Journal of Experimental Medicine, 2016, 213, 2655-2669.	8.5	45
65	D22â€Compensation in preclinical huntington's disease: evidence from the track-on HD study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A42.2-A42.	1.9	0
66	Visuospatial Processing Deficits Linked to Posterior Brain Regions in Premanifest and Early Stage Huntington's Disease. Journal of the International Neuropsychological Society, 2016, 22, 595-608.	1.8	44
67	Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds. Neuroscience, 2016, 315, 175-195.	2.3	24
68	DNA methylation profiling in human Huntington's disease brain. Human Molecular Genetics, 2016, 25, 2013-2030.	2.9	56
69	Compensation in Preclinical Huntington's Disease: Evidence From the Track-On HD Study. EBioMedicine, 2015, 2, 1420-1429.	6.1	122
70	Proteolytic degradation of neuropeptide Y (<scp>NPY</scp>) from head to toe: Identification of novel <scp>NPY</scp> â€eleaving peptidases and potential drug interactions in <scp>CNS</scp> and Periphery. Journal of Neurochemistry, 2015, 135, 1019-1037.	3.9	28
71	Indoleamine 2,3 Dioxygenase as a Potential Therapeutic Target in Huntington's Disease. Journal of Huntington's Disease, 2015, 4, 109-118.	1.9	34
72	Detection of Motor Changes in Huntington's Disease Using Dynamic Causal Modeling. Frontiers in Human Neuroscience, 2015, 9, 634.	2.0	8

#	Article	IF	CITATIONS
73	A longitudinal study of magnetic resonance spectroscopy Huntington's disease biomarkers. Movement Disorders, 2015, 30, 393-401.	3.9	50
74	Characterisation of immune cell function in fragment and full-length Huntington's disease mouse models. Neurobiology of Disease, 2015, 73, 388-398.	4.4	50
75	Direct intracerebral delivery of a miR-33 antisense oligonucelotide into mouse brain increases brain ABCA1 expression. Neuroscience Letters, 2015, 598, 66-72.	2.1	26
76	Reliability and Factor Structure of the Short Problem Behaviors Assessment for Huntington's Disease (PBA-s) in the TRACK-HD and REGISTRY studies. Journal of Neuropsychiatry and Clinical Neurosciences, 2015, 27, 59-64.	1.8	66
77	Murine Models of HD. , 2015, , 533-546.		1
78	A SNP in the HTT promoter alters NF-κB binding and is a bidirectional genetic modifier of Huntington disease. Nature Neuroscience, 2015, 18, 807-816.	14.8	113
79	Huntington disease. Nature Reviews Disease Primers, 2015, 1, 15005.	30.5	1,031
80	Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington's disease patients. Journal of Clinical Investigation, 2015, 125, 1979-1986.	8.2	209
81	Ultrasensitive measurement of huntingtin protein in cerebrospinal fluid demonstrates increase with Huntington disease stage and decrease following brain huntingtin suppression. Scientific Reports, 2015, 5, 12166.	3.3	82
82	Treatment of Huntington Disease and Comorbid Trichotillomania With Aripiprazole. Journal of Neuropsychiatry and Clinical Neurosciences, 2015, 27, e211-e212.	1.8	4
83	The impact of occipital lobe cortical thickness on cognitive task performance: An investigation in Huntington's Disease. Neuropsychologia, 2015, 79, 138-146.	1.6	56
84	p53 increases caspase-6 expression and activation in muscle tissue expressing mutant huntingtin. Human Molecular Genetics, 2014, 23, 717-729.	2.9	42
85	Huntington's disease: A field on the move. Movement Disorders, 2014, 29, 1333-1334.	3.9	4
86	Diagnostic criteria for Huntington's disease based on natural history. Movement Disorders, 2014, 29, 1335-1341.	3.9	158
87	The Catalytic Function of Hormone-Sensitive Lipase is Essential for Fertility in Male Mice. Endocrinology, 2014, 155, 3047-3053.	2.8	12
88	Huntington disease: natural history, biomarkers and prospects for therapeutics. Nature Reviews Neurology, 2014, 10, 204-216.	10.1	873
89	Progranulin in neurodegenerative disease. Trends in Neurosciences, 2014, 37, 388-398.	8.6	142
90	Iron dysregulation in Huntington's disease. Journal of Neurochemistry, 2014, 130, 328-350.	3.9	90

#	Article	IF	CITATIONS
91	Clinical utility gene card for: Huntington's disease. European Journal of Human Genetics, 2014, 22, 713-713.	2.8	4
92	Aquatherapy for Neurodegenerative Disorders. Journal of Huntington's Disease, 2014, 3, 5-11.	1.9	37
93	Neurobiology of Huntington's Disease. Current Topics in Behavioral Neurosciences, 2014, 22, 81-100.	1.7	10
94	Correction of inter-scanner and within-subject variance in structural MRI based automated diagnosing. NeuroImage, 2014, 98, 405-415.	4.2	40
95	The Potential of Composite Cognitive Scores for Tracking Progression in Huntington's Disease. Journal of Huntington's Disease, 2014, 3, 197-207.	1.9	8
96	Clinical impairment in premanifest and early Huntington's disease is associated with regionally specific atrophy. Human Brain Mapping, 2013, 34, 519-529.	3.6	113
97	Ageâ€dependent alterations of the kynurenine pathway in the <scp>YAC</scp> 128 mouse model of Huntington disease. Journal of Neurochemistry, 2013, 127, 852-867.	3.9	27
98	Progranulin promotes activation of microglia/macrophage after pilocarpine-induced status epilepticus. Brain Research, 2013, 1530, 54-65.	2.2	24
99	A systematic review and metaâ€analysis of clinical variables used in Huntington disease research. Movement Disorders, 2013, 28, 1987-1994.	3.9	8
100	The absence of indoleamine 2,3-dioxygenase expression protects against NMDA receptor-mediated excitotoxicity in mouse brain. Experimental Neurology, 2013, 249, 144-148.	4.1	26
101	The advantages of frontotemporal degeneration drug development (partÂ2Âof frontotemporal) Tj ETQq1 1 0.78	84314 rgB⁻ 0.8	[/Qyerlock 10
102	Frontotemporal degeneration, the next therapeutic frontier: Molecules and animal models for frontotemporal degeneration drug development. Alzheimer's and Dementia, 2013, 9, 176-188.	0.8	58
103	Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurology, The, 2013, 12, 637-649.	10.2	704
104	Sensitivity to neurotoxic stress is not increased in progranulin-deficient mice. Neurobiology of Aging, 2013, 34, 2548-2550.	3.1	8
105	Postnatal muscle modification by myogenic factors modulates neuropathology and survival in an ALS mouse model. Nature Communications, 2013, 4, 2906.	12.8	15
106	8OHdG is not a biomarker for Huntington disease state or progression. Neurology, 2013, 80, 1934-1941.	1.1	27
107	Corpus Callosal Atrophy in Premanifest and Early Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 517-526.	1.9	29
108	Quality of Life in Huntington's Disease: A Comparative Study Investigating the Impact for those with Pre-Manifest and Early Manifest Disease, and their Partners. Journal of Huntington's Disease, 2013, 2, 159-175.	1.9	43

#	Article	IF	CITATIONS
109	Editorial. Journal of Huntington's Disease, 2013, 2, 1-1.	1.9	0
110	Evaluation of longitudinal 12 and 24 month cognitive outcomes in premanifest and early Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 687-694.	1.9	120
111	Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease. Human Molecular Genetics, 2012, 21, 3097-3111.	2.9	55
112	Visual Working Memory Impairment in Premanifest Gene-Carriers and Early Huntington's Disease. Journal of Huntington's Disease, 2012, 1, 97-106.	1.9	15
113	Journal of Huntington's Disease. Journal of Huntington's Disease, 2012, 1, 1-1.	1.9	0
114	Decreasing Levels of the cdk5 Activators, p25 and p35, Reduces Excitotoxicity in Striatal Neurons. Journal of Huntington's Disease, 2012, 1, 89-96.	1.9	9
115	Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease. Neurobiology of Disease, 2012, 45, 438-449.	4.4	105
116	Synaptic dysfunction in progranulin-deficient mice. Neurobiology of Disease, 2012, 45, 711-722.	4.4	144
117	8OHdG as a marker for Huntington disease progression. Neurobiology of Disease, 2012, 46, 625-634.	4.4	58
118	Cystamine and ethyl-eicosapentaenoic acid treatment fail to prevent malonate-induced striatal toxicity in mice. Neurobiology of Aging, 2011, 32, 2326.e1-2326.e4.	3.1	0
119	Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurology, The, 2011, 10, 31-42.	10.2	530
120	Development of biomarkers for Huntington's disease. Lancet Neurology, The, 2011, 10, 573-590.	10.2	145
121	YB-1 Bridges Neural Stem Cells and Brain Tumor–Initiating Cells via Its Roles in Differentiation and Cell Growth. Cancer Research, 2011, 71, 5569-5578.	0.9	74
122	The structural involvement of the cingulate cortex in premanifest and early Huntington's disease. Movement Disorders, 2011, 26, 1684-1690.	3.9	56
123	Progranulin expression in the developing and adult murine brain. Journal of Comparative Neurology, 2010, 518, 3931-3947.	1.6	115
124	Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis. Human Molecular Genetics, 2010, 19, 1438-1452.	2.9	91
125	Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression. Human Molecular Genetics, 2010, 19, 1528-1538.	2.9	100
126	Expression analysis of novel striatal-enriched genes in Huntington disease. Human Molecular Genetics, 2010, 19, 609-622.	2.9	45

#	Article	IF	CITATIONS
127	Phosphorylation of Huntingtin at Ser ⁴²¹ in YAC128 Neurons Is Associated with Protection of YAC128 Neurons from NMDA-Mediated Excitotoxicity and Is Modulated by PP1 and PP2A. Journal of Neuroscience, 2010, 30, 14318-14329.	3.6	81
128	The Clinical and Genetic Features of Huntington Disease. Journal of Geriatric Psychiatry and Neurology, 2010, 23, 243-259.	2.3	112
129	Differential Susceptibility to Excitotoxic Stress in YAC128 Mouse Models of Huntington Disease between Initiation and Progression of Disease. Journal of Neuroscience, 2009, 29, 2193-2204.	3.6	123
130	Age-Dependent Alterations of Corticostriatal Activity in the YAC128 Mouse Model of Huntington Disease. Journal of Neuroscience, 2009, 29, 2414-2427.	3.6	160
131	Brain-specific Proteins Decline in the Cerebrospinal Fluid of Humans with Huntington Disease. Molecular and Cellular Proteomics, 2009, 8, 451-466.	3.8	76
132	Gender differences in expression of the human caspase-12 long variant determines susceptibility to <i>Listeria monocytogenes</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9016-9020.	7.1	53
133	Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurology, The, 2009, 8, 791-801.	10.2	856
134	Tetrabenazine. Nature Reviews Drug Discovery, 2009, 8, 17-18.	46.4	47
135	Murine models of Huntington disease. Future Neurology, 2009, 4, 617-638.	0.5	0
136	Re: Autopsyâ€proven Huntington's disease with 29 trinucleotide repeats. Movement Disorders, 2008, 23, 1794-1795.	3.9	20
137	Huntington Disease. , 2008, , 207-266.		5
138	A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. Journal of Experimental Medicine, 2008, 205, 1869-1877.	8.5	559
139	Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Human Molecular Genetics, 2007, 16, 1845-1861.	2.9	304
140	Proteomic Profiling of Plasma in Huntington's Disease Reveals Neuroinflammatory Activation and Biomarker Candidates. Journal of Proteome Research, 2007, 6, 2833-2840.	3.7	212
141	Chapter 15 Juvenile amyotrophic lateral sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 82, 301-312.	1.8	42
142	Cocaine―and amphetamineâ€regulated transcript is increased in Huntington disease. Movement Disorders, 2007, 22, 1952-1954.	3.9	18
143	CAG-encoded polyglutamine length polymorphism in the human genome. BMC Genomics, 2007, 8, 126.	2.8	78
144	Phenotypic abnormalities in the YAC128 mouse model of Huntington disease are penetrant on multiple genetic backgrounds and modulated by strain. Neurobiology of Disease, 2007, 26, 189-200.	4.4	97

#	Article	IF	CITATIONS
145	Testicular degeneration in Huntington disease. Neurobiology of Disease, 2007, 26, 512-520.	4.4	90
146	Cleavage at the Caspase-6 Site Is Required for Neuronal Dysfunction and Degeneration Due to Mutant Huntingtin. Cell, 2006, 125, 1179-1191.	28.9	600
147	Cerebrospinal fluid levels of orexinâ€A are not a clinically useful biomarker for Huntington disease. Clinical Genetics, 2006, 70, 78-79.	2.0	31
148	Huntingtin inhibits caspase-3 activation. EMBO Journal, 2006, 25, 5896-5906.	7.8	88
149	Wild-type huntingtin protects neurons from excitotoxicity. Journal of Neurochemistry, 2006, 96, 1121-1129.	3.9	145
150	Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease. Neurobiology of Disease, 2006, 21, 392-403.	4.4	108
151	Levels of mutant huntingtin influence the phenotypic severity of Huntington disease in YAC128 mouse models. Neurobiology of Disease, 2006, 21, 444-455.	4.4	77
152	Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiology of Disease, 2006, 23, 190-197.	4.4	137
153	Familial frontotemporal dementia with neuronal intranuclear inclusions is not a polyglutamine expansion disease. BMC Neurology, 2006, 6, 32.	1.8	6
154	Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease. BMC Neuroscience, 2006, 7, 80.	1.9	47
155	Body weight is modulated by levels of full-length Huntingtin. Human Molecular Genetics, 2006, 15, 1513-1523.	2.9	101
156	Is tetrabenazine safe and effective for suppressing chorea in Huntington's disease?. Nature Clinical Practice Neurology, 2006, 2, 536-537.	2.5	4
157	Treatment of YAC128 mice and their wild-type littermates with cystamine does not lead to its accumulation in plasma or brain: implications for the treatment of Huntington disease. Journal of Neurochemistry, 2005, 94, 1087-1101.	3.9	52
158	Cystamine treatment is neuroprotective in the YAC128 mouse model of Huntington disease. Journal of Neurochemistry, 2005, 95, 210-220.	3.9	96
159	Satellog: a database for the identification and prioritization of satellite repeats in disease association studies. BMC Bioinformatics, 2005, 6, 145.	2.6	16
160	Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Human Molecular Genetics, 2005, 14, 3823-3835.	2.9	152
161	Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease. Human Molecular Genetics, 2005, 14, 1379-1392.	2.9	149
162	Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11402-11407.	7.1	247

#	Article	IF	CITATIONS
163	Cross-species characterization of the ALS2 gene and analysis of its pattern of expression in development and adulthood. Neurobiology of Disease, 2005, 18, 243-257.	4.4	25
164	Ethyl-EPA treatment improves motor dysfunction, but not neurodegeneration in the YAC128 mouse model of Huntington disease. Experimental Neurology, 2005, 196, 266-272.	4.1	60
165	Cognitive Dysfunction Precedes Neuropathology and Motor Abnormalities in the YAC128 Mouse Model of Huntington's Disease. Journal of Neuroscience, 2005, 25, 4169-4180.	3.6	282
166	Depletion of wild-type huntingtin in mouse models of neurologic diseases. Journal of Neurochemistry, 2003, 87, 101-106.	3.9	97
167	Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Human Molecular Genetics, 2003, 12, 1555-1567.	2.9	713
168	Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington's disease. Human Molecular Genetics, 2002, 11, 1939-1951.	2.9	129
169	Increased Sensitivity to N-Methyl-D-Aspartate Receptor-Mediated Excitotoxicity in a Mouse Model of Huntington's Disease. Neuron, 2002, 33, 849-860.	8.1	553
170	Caspase Cleavage of Mutant Huntingtin Precedes Neurodegeneration in Huntington's Disease. Journal of Neuroscience, 2002, 22, 7862-7872.	3.6	344
171	Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nature Neuroscience, 2002, 5, 731-736.	14.8	925
172	Loss of Huntingtin-Mediated BDNF Gene Transcription in Huntington's Disease. Science, 2001, 293, 493-498.	12.6	1,191
173	Wild-Type Huntingtin Reduces the Cellular Toxicity of Mutant Huntingtin In Vivo. American Journal of Human Genetics, 2001, 68, 313-324.	6.2	210
174	NMDA receptor function in mouse models of Huntington disease. Journal of Neuroscience Research, 2001, 66, 525-539.	2.9	246
175	A one-hit model of cell death in inherited neuronal degenerations. Nature, 2000, 406, 195-199.	27.8	294
176	A YAC Mouse Model for Huntington's Disease with Full-Length Mutant Huntingtin, Cytoplasmic Toxicity, and Selective Striatal Neurodegeneration. Neuron, 1999, 23, 181-192.	8.1	789