
Swapan Mallick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4565016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ancient Admixture in Human History. Genetics, 2012, 192, 1065-1093.	2.9	2,012
2	The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 2014, 505, 43-49.	27.8	1,830
3	A High-Coverage Genome Sequence from an Archaic Denisovan Individual. Science, 2012, 338, 222-226.	12.6	1,695
4	Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 2010, 468, 1053-1060.	27.8	1,537
5	Massive migration from the steppe was a source for Indo-European languages in Europe. Nature, 2015, 522, 207-211.	27.8	1,435
6	The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature, 2016, 538, 201-206.	27.8	1,216
7	Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 2014, 513, 409-413.	27.8	1,179
8	Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 2015, 528, 499-503.	27.8	1,160
9	A framework for the interpretation of de novo mutation in human disease. Nature Genetics, 2014, 46, 944-950.	21.4	943
10	The genomic landscape of Neanderthal ancestry in present-day humans. Nature, 2014, 507, 354-357.	27.8	877
11	Genomic insights into the origin of farming in the ancient Near East. Nature, 2016, 536, 419-424.	27.8	733
12	The genetic history of Ice Age Europe. Nature, 2016, 534, 200-205.	27.8	729
13	An early modern human from Romania with a recent Neanderthal ancestor. Nature, 2015, 524, 216-219.	27.8	633
14	Insights into human genetic variation and population history from 929 diverse genomes. Science, 2020, 367, .	12.6	534
15	The Beaker phenomenon and the genomic transformation of northwest Europe. Nature, 2018, 555, 190-196.	27.8	503
16	The genomic history of southeastern Europe. Nature, 2018, 555, 197-203.	27.8	479
17	The formation of human populations in South and Central Asia. Science, 2019, 365, .	12.6	383
18	Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130624.	4.0	381

SWAPAN MALLICK

#	Article	IF	CITATIONS
19	The Combined Landscape of Denisovan and Neanderthal Ancestry in Present-Day Humans. Current Biology, 2016, 26, 1241-1247.	3.9	377
20	Genetic evidence for two founding populations of the Americas. Nature, 2015, 525, 104-108.	27.8	348
21	The genomic history of the Iberian Peninsula over the past 8000 years. Science, 2019, 363, 1230-1234.	12.6	340
22	Gibbon genome and the fast karyotype evolution of small apes. Nature, 2014, 513, 195-201.	27.8	320
23	Reconstructing Prehistoric African Population Structure. Cell, 2017, 171, 59-71.e21.	28.9	308
24	Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Science Advances, 2016, 2, e1501385.	10.3	306
25	Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature, 2017, 551, 368-372.	27.8	306
26	Global diversity, population stratification, and selection of human copy-number variation. Science, 2015, 349, aab3761.	12.6	293
27	Complete Genomes Reveal Signatures of Demographic and Genetic Declines in the Woolly Mammoth. Current Biology, 2015, 25, 1395-1400.	3.9	263
28	Genomic insights into the peopling of the Southwest Pacific. Nature, 2016, 538, 510-513.	27.8	262
29	Reconstructing the Deep Population History of Central and South America. Cell, 2018, 175, 1185-1197.e22.	28.9	259
30	Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science, 2018, 361, 92-95.	12.6	250
31	Genomic insights into the formation of human populations in East Asia. Nature, 2021, 591, 413-419.	27.8	216
32	Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nature Communications, 2017, 8, 14115.	12.8	210
33	Genetic origins of the Minoans and Mycenaeans. Nature, 2017, 548, 214-218.	27.8	203
34	Ancient genomes indicate population replacement in Early Neolithic Britain. Nature Ecology and Evolution, 2019, 3, 765-771.	7.8	156
35	A comprehensive genomic history of extinct and living elephants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2566-E2574.	7.1	142
36	The contribution of rare variation to prostate cancer heritability. Nature Genetics, 2016, 48, 30-35.	21.4	139

SWAPAN MALLICK

#	Article	IF	CITATIONS
37	Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature, 2019, 570, 236-240.	27.8	118
38	Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nature Communications, 2019, 10, 590.	12.8	113
39	The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nature Ecology and Evolution, 2020, 4, 334-345.	7.8	95
40	Population Turnover in Remote Oceania Shortly after Initial Settlement. Current Biology, 2018, 28, 1157-1165.e7.	3.9	91
41	The difficulty of avoiding false positives in genome scans for natural selection. Genome Research, 2009, 19, 922-933.	5.5	89
42	Ancient West African foragers in the context of African population history. Nature, 2020, 577, 665-670.	27.8	86
43	Large-scale migration into Britain during the Middle to Late Bronze Age. Nature, 2022, 601, 588-594.	27.8	86
44	African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations. Genome Biology, 2019, 20, 82.	8.8	84
45	Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nature Communications, 2018, 9, 3336.	12.8	71
46	A Paleogenomic Reconstruction of the Deep Population History of the Andes. Cell, 2020, 181, 1131-1145.e21.	28.9	69
47	A genetic history of the pre-contact Caribbean. Nature, 2021, 590, 103-110.	27.8	67
48	An Ancient Harappan Genome Lacks Ancestry from Steppe Pastoralists or Iranian Farmers. Cell, 2019, 179, 729-735.e10.	28.9	62
49	A unified genealogy of modern and ancient genomes. Science, 2022, 375, eabi8264.	12.6	59
50	Population Structure of UK Biobank and Ancient Eurasians Reveals Adaptation at Genes Influencing Blood Pressure. American Journal of Human Genetics, 2016, 99, 1130-1139.	6.2	53
51	The Genomic History of the Bronze Age Southern Levant. Cell, 2020, 181, 1146-1157.e11.	28.9	51
52	Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution. ELife, 2017, 6, .	6.0	50
53	Ethics of DNA research on human remains: five globally applicable guidelines. Nature, 2021, 599, 41-46.	27.8	49
54	Reconstruction of Y-chromosome phylogeny reveals two neolithic expansions of Tibeto-Burman populations. Molecular Genetics and Genomics, 2018, 293, 1293-1300.	2.1	46

SWAPAN MALLICK

#	Article	IF	CITATIONS
55	A Re-Appraisal of the Early Andean Human Remains from Lauricocha in Peru. PLoS ONE, 2015, 10, e0127141.	2.5	41
56	Human auditory ossicles as an alternative optimal source of ancient DNA. Genome Research, 2020, 30, 427-436.	5.5	37
57	ContamLD: estimation of ancient nuclear DNA contamination using breakdown of linkage disequilibrium. Genome Biology, 2020, 21, 199.	8.8	29
58	Ancient genomes in South Patagonia reveal population movements associated with technological shifts and geography. Nature Communications, 2020, 11, 3868.	12.8	28
59	Whole-exome sequencing of over 4100 men of African ancestry and prostate cancer risk. Human Molecular Genetics, 2016, 25, 371-381.	2.9	26
60	Paternal origin of Paleo-Indians in Siberia: insights from Y-chromosome sequences. European Journal of Human Genetics, 2018, 26, 1687-1696.	2.8	21
61	Ancient DNA from the skeletons of Roopkund Lake reveals Mediterranean migrants in India. Nature Communications, 2019, 10, 3670.	12.8	19
62	Mitochondrial DNA analysis of eneolithic trypillians from Ukraine reveals neolithic farming genetic roots. PLoS ONE, 2017, 12, e0172952.	2.5	19
63	Social stratification without genetic differentiation at the site of Kulubnarti in Christian Period Nubia. Nature Communications, 2021, 12, 7283.	12.8	13
64	Ancient genomes reveal long-range influence of the pre-Columbian culture and site of Tiwanaku. Science Advances, 2021, 7, eabg7261.	10.3	8
65	No evidence for unknown archaic ancestry in South Asia. Nature Genetics, 2018, 50, 632-633.	21.4	7
66	Mitochondrial genome diversity on the Central Siberian Plateau with particular reference to the prehistory of northernmost Eurasia. PLoS ONE, 2021, 16, e0244228.	2.5	4