Richard M Siegel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/456474/publications.pdf

Version: 2024-02-01

136 15,271 57 121 papers citations h-index g-index

141 141 141 18756

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Interleukin-2 Signaling via STAT5 Constrains T Helper 17 Cell Generation. Immunity, 2007, 26, 371-381.	14.3	1,317
2	MATURE T LYMPHOCYTE APOPTOSIS—Immune Regulation in a Dynamic and Unpredictable Antigenic Environment. Annual Review of Immunology, 1999, 17, 221-253.	21.8	881
3	A Domain in TNF Receptors That Mediates Ligand-Independent Receptor Assembly and Signaling. Science, 2000, 288, 2351-2354.	12.6	769
4	Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). Journal of Experimental Medicine, 2011, 208, 519-533.	8.5	749
5	Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature, 2002, 419, 395-399.	27.8	648
6	Fas Preassociation Required for Apoptosis Signaling and Dominant Inhibition by Pathogenic Mutations. Science, 2000, 288, 2354-2357.	12.6	600
7	Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nature Genetics, 2016, 48, 67-73.	21.4	513
8	Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood, 2010, 116, e35-e40.	1.4	405
9	The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nature lmmunology, 2000, $1,469-474$.	14.5	394
10	IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nature Communications, 2018, 9, 1758.	12.8	392
11	Selective Recognition of Acetylated Histones by Bromodomain Proteins Visualized in Living Cells. Molecular Cell, 2004, 13, 33-43.	9.7	341
12	Membrane Oligomerization and Cleavage Activates the Caspase-8 (FLICE/MACHÎ ± 1) Death Signal. Journal of Biological Chemistry, 1998, 273, 4345-4349.	3.4	330
13	Life And Death Decisions. Immunity, 2004, 21, 461-465.	14.3	294
14	Caspases at the crossroads of immune-cell life and death. Nature Reviews Immunology, 2006, 6, 308-317.	22.7	269
15	The Fas–FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nature Structural and Molecular Biology, 2010, 17, 1324-1329.	8.2	236
16	Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nature Reviews Rheumatology, 2017, 13, 217-233.	8.0	235
17	Death-effector Filaments: Novel Cytoplasmic Structures that Recruit Caspases and Trigger Apoptosis. Journal of Cell Biology, 1998, 141, 1243-1253.	5.2	225
18	Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood, 2006, 108, 1320-1327.	1.4	225

#	Article	IF	CITATIONS
19	The TNF-Family Receptor DR3 is Essential for Diverse T Cell-Mediated Inflammatory Diseases. Immunity, 2008, 29, 79-89.	14.3	215
20	Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death. Nature Immunology, 2004, 5, 182-189.	14.5	204
21	Generation of an Apoptotic Intracellular Peptide by Î ³ -Secretase Cleavage of Alzheimer's Amyloid ß Protein Precursor. Journal of Alzheimer's Disease, 2000, 2, 289-301.	2.6	195
22	Memory T cell–driven differentiation of naive cells impairs adoptive immunotherapy. Journal of Clinical Investigation, 2015, 126, 318-334.	8.2	193
23	Signaling by the TNF Receptor Superfamily and T Cell Homeostasis. Immunity, 2000, 13, 419-422.	14.3	187
24	Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4552-4557.	7.1	183
25	Inhibition of thymocyte apoptosis and negative antigenic selection in bcl-2 transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7003-7007.	7.1	161
26	SPOTS. Journal of Cell Biology, 2004, 167, 735-744.	5.2	137
27	Structural Basis and Functional Role of Intramembrane Trimerization of the Fas/CD95 Death Receptor. Molecular Cell, 2016, 61, 602-613.	9.7	135
28	Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. Journal of Clinical Investigation, 2015, 125, 4592-4600.	8.2	135
29	Differential effects of Bcl-2 on T and B cells in transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11376-11380.	7.1	134
30	The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunology, 2011, 4, 172-185.	6.0	133
31	The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells. Mucosal Immunology, 2014, 7, 958-968.	6.0	132
32	Immunophenotypic profiles in families with autoimmune lymphoproliferative syndrome. Blood, 2001, 98, 2466-2473.	1.4	129
33	Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex. Molecular Cell, 2016, 64, 236-250.	9.7	128
34	Measurement of Molecular Interactions in Living Cells by Fluorescence Resonance Energy Transfer Between Variants of the Green Fluorescent Protein. Science Signaling, 2000, 2000, pl1-pl1.	3.6	122
35	Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein. Cytometry, 2001, 44, 361-368.	1.8	113
36	Inhibition of MAPK Signaling Pathways by VopA from Vibrio parahaemolyticus. Journal of Biological Chemistry, 2004, 279, 51953-51957.	3.4	112

#	Article	IF	CITATIONS
37	TL1A and DR3, a TNF family ligandâ€receptor pair that promotes lymphocyte costimulation, mucosal hyperplasia, and autoimmune inflammation. Immunological Reviews, 2011, 244, 188-196.	6.0	111
38	T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. Journal of Clinical Investigation, 2019, 129, 1551-1565.	8.2	108
39	Prolonged fasting suppresses mitochondrial NLRP3 inflammasome assembly and activation via SIRT3-mediated activation of superoxide dismutase 2. Journal of Biological Chemistry, 2017, 292, 12153-12164.	3.4	107
40	Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2019, 78, 957-966.	0.9	106
41	RORα-expressing T regulatory cells restrain allergic skin inflammation. Science Immunology, 2018, 3, .	11.9	97
42	The TNF-Family Ligand TL1A and Its Receptor DR3 Promote T Cell–Mediated Allergic Immunopathology by Enhancing Differentiation and Pathogenicity of IL-9–Producing T Cells. Journal of Immunology, 2015, 194, 3567-3582.	0.8	96
43	Impaired in vitro regulatory T cell function associated with Wiskott–Aldrich syndrome. Clinical Immunology, 2007, 124, 41-48.	3.2	95
44	Dominant-negative effect of the heterozygous C104R TACI mutation in common variable immunodeficiency (CVID). Journal of Clinical Investigation, 2007, 117, 1550-1557.	8.2	93
45	Spontaneous Secretion of the Citrullination Enzyme PAD2 and Cell Surface Exposure of PAD4 by Neutrophils. Frontiers in Immunology, 2017, 8, 1200.	4.8	82
46	The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNF \hat{I} ±- and FasL-induced apoptosis by interacting with caspase-8. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 256-271.	4.9	81
47	Interaction of Histone Acetylases and Deacetylases In Vivo. Molecular and Cellular Biology, 2003, 23, 1025-1033.	2.3	78
48	The bile acid–activated phosphatidylinositol 3-kinase pathway inhibits Fas apoptosis upstream of bid in rodent hepatocytes. Gastroenterology, 2001, 120, 1810-1817.	1.3	76
49	Autoimmunity versus tolerance: Can dying cells tip the balance?. Clinical Immunology, 2007, 122, 125-134.	3.2	73
50	Binding of FADD and Caspase-8 to Molluscum Contagiosum Virus MC159 v-FLIP Is Not Sufficient for Its Antiapoptotic Function. Journal of Virology, 2002, 76, 697-706.	3.4	69
51	The NS3 protein of hepatitis C virus induces caspase-8-mediated apoptosis independent of its protease or helicase activities. Virology, 2004, 329, 53-67.	2.4	69
52	Dominant inhibition of Fas ligand-mediated apoptosis due to a heterozygous mutation associated with autoimmune lymphoproliferative syndrome (ALPS) Type Ib. BMC Medical Genetics, 2007, 8, 41.	2.1	69
53	Extracellular Flux Analysis to Monitor Glycolytic Rates and Mitochondrial Oxygen Consumption. Methods in Enzymology, 2014, 542, 125-149.	1.0	67
54	Falling into TRAPS $\hat{a} \in \text{``receptor misfolding in the TNF receptor 1-associated periodic fever syndrome.}$ Arthritis Research and Therapy, 2007, 9, 217.	3.5	64

#	Article	IF	CITATIONS
55	Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nature Communications, 2016, 7, 10857.	12.8	62
56	T cell–directed therapies: lessons learned and future prospects. Nature Immunology, 2007, 8, 25-30.	14.5	59
57	Beyond Cell Death: New Functions for TNF Family Cytokines in Autoimmunity and Tumor Immunotherapy. Trends in Molecular Medicine, 2018, 24, 642-653.	6.7	59
58	The role of Fas and related death receptors in autoimmune and other disease states. Journal of Allergy and Clinical Immunology, 1999, 103, 729-738.	2.9	58
59	The TNF-family cytokine TL1A: from lymphocyte costimulator to disease co-conspirator. Journal of Leukocyte Biology, 2015, 98, 333-345.	3.3	58
60	Measurement of two caspase activities simultaneously in living cells by a novel dual FRET fluorescent indicator probe. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 477-486.	1.5	56
61	Somatic activating mutations in MAP2K1 cause melorheostosis. Nature Communications, 2018, 9, 1390.	12.8	56
62	Unlike Th1, Th17 Cells Mediate Sustained Autoimmune Inflammation and Are Highly Resistant to Restimulation-Induced Cell Death. Journal of Immunology, 2009, 183, 7547-7556.	0.8	55
63	New insights into T cell biology and T cellâ€directed therapy for autoimmunity, inflammation, and immunosuppression. Annals of the New York Academy of Sciences, 2010, 1183, 123-148.	3.8	55
64	Retinoic Acid Receptor Alpha Represses a Th9 Transcriptional and Epigenomic Program to Reduce Allergic Pathology. Immunity, 2019, 50, 106-120.e10.	14.3	54
65	Homotypic FADD interactions through a conserved RXDLL motif are required for death receptor-induced apoptosis. Cell Death and Differentiation, 2006, 13, 1641-1650.	11.2	52
66	Rheumatologic and autoimmune manifestations of primary immunodeficiency disorders. Current Opinion in Rheumatology, 2009, 21, 78-84.	4.3	52
67	The murine equivalent of the A181E TACI mutation associated with common variable immunodeficiency severely impairs B-cell function. Blood, 2009, 114, 2254-2262.	1.4	49
68	Progranulin Resolves Inflammation. Science, 2011, 332, 427-428.	12.6	49
69	Systemic autoimmunity and defective Fas ligand secretion in the absence of the Wiskott-Aldrich syndrome protein. Blood, 2010, 116, 740-747.	1.4	48
70	Safety and Tolerability of Omalizumab: A Randomized Clinical Trial of Humanized Antiâ€lgE Monoclonal Antibody in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2019, 71, 1135-1140.	5.6	46
71	Viral FLIP Impairs Survival of Activated T Cells and Generation of CD8+ T Cell Memory. Journal of Immunology, 2004, 172, 6313-6323.	0.8	45
72	Fas/CD95 prevents autoimmunity independently of lipid raft localization and efficient apoptosis induction. Nature Communications, 2016, 7, 13895.	12.8	45

#	Article	IF	CITATIONS
73	TRAF6 Regulates Cell Fate Decisions by Inducing Caspase 8-dependent Apoptosis and the Activation of NF-κB. Journal of Biological Chemistry, 2006, 281, 11235-11249.	3.4	44
74	Cytokines and Cytokine Receptors. , 2019, , 127-155.e1.		44
75	Self-reactive T cells can escape clonal deletion in T-cell receptor V beta 8.1 transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 7135-7139.	7.1	43
76	Measurement of Apoptosis and Other Forms of Cell Death. Current Protocols in Immunology, 2004, 59, Unit 3.17.	3.6	43
77	CCR2 Identifies a Stable Population of Human Effector Memory CD4+ T Cells Equipped for Rapid Recall Response. Journal of Immunology, 2010, 185, 6646-6663.	0.8	41
78	Monitoring Caspase Activity in Living Cells Using Fluorescent Proteins and Flow Cytometry. American Journal of Pathology, 2004, 164, 1901-1913.	3.8	38
79	Caspase-8 Activity Prevents Type 2 Cytokine Responses and Is Required for Protective T Cell-Mediated Immunity against <i>Trypanosoma cruzi</i> Infection. Journal of Immunology, 2005, 174, 6314-6321.	0.8	38
80	Cutting Edge: Rac GTPases Sensitize Activated T Cells to Die via Fas. Journal of Immunology, 2007, 179, 6384-6388.	0.8	38
81	Many Checkpoints on the Road to Cell Death:Regulation of Fas–FasL Interactions and Fas Signaling in Peripheral Immune Responses. Results and Problems in Cell Differentiation, 2009, 49, 17-47.	0.7	38
82	Specific elimination of effector memory CD4+ T cells due to enhanced Fas signaling complex formation and association with lipid raft microdomains. Cell Death and Differentiation, 2011, 18, 712-720.	11.2	35
83	Wiskott–Aldrich Syndrome at the nexus of autoimmune and primary immunodeficiency diseases. FEBS Letters, 2011, 585, 3710-3714.	2.8	33
84	Progressive Glomerulonephritis and Histiocytic Sarcoma Associated with Macrophage Functional Defects in CYP1B1-Deficient Mice. Toxicologic Pathology, 2004, 32, 710-718.	1.8	31
85	Reduced monocyte and macrophage TNFSF15/TL1A expression is associated with susceptibility to inflammatory bowel disease. PLoS Genetics, 2018, 14, e1007458.	3.5	30
86	Origin and selection of peripheral CD4â^'CD8â^' T cells bearing $\hat{l}\pm/\hat{l}^2$ T cell antigen receptors in autoimmunegld mice. European Journal of Immunology, 1990, 20, 723-730.	2.9	29
87	The Death Effector Domains (DEDs) of the Molluscum Contagiosum Virus MC159 v-FLIP Protein Are Not Functionally Interchangeable with Each Other or with the DEDs of Caspase-8. Virology, 2002, 300, 217-225.	2.4	29
88	A Fas-Associated Death Domain Protein/Caspase-8-Signaling Axis Promotes S-Phase Entry and Maintains S6 Kinase Activity in T Cells Responding to IL-2. Journal of Immunology, 2007, 179, 5291-5300.	0.8	28
89	Induction of TRAIL- and TNF-α-Dependent Apoptosis in Human Monocyte-Derived Dendritic Cells by Microfilariae of Brugia malayi. Journal of Immunology, 2008, 181, 7081-7089.	0.8	28
90	Insights into rheumatic diseases from next-generation sequencing. Nature Reviews Rheumatology, 2019, 15, 327-339.	8.0	28

#	Article	IF	Citations
91	Fas Ligand localizes to intraluminal vesicles within NK cell cytolytic granules and is enriched at the immune synapse. Immunity, Inflammation and Disease, 2018, 6, 312-321.	2.7	26
92	To B or not to B: TNF family signaling in lymphocytes. Nature Immunology, 2001, 2, 577-578.	14.5	25
93	Death Receptor Signaling and Autoimmunity. Immunologic Research, 2003, 27, 499-512.	2.9	25
94	Daily variation in macrophage phagocytosis is clockâ€independent and dispensable for cytokine production. Immunology, 2019, 157, 122-136.	4.4	24
95	Somatic $\langle i \rangle$ SMAD3 $\langle i \rangle$ -activating mutations cause melorheostosis by up-regulating the TGF- \hat{l}^2 /SMAD pathway. Journal of Experimental Medicine, 2020, 217, .	8.5	24
96	Distinct Clinical and Pathological Features of Melorheostosis Associated With Somatic <i>MAP2K1</i> Mutations. Journal of Bone and Mineral Research, 2019, 34, 145-156.	2.8	22
97	LOX-1: A potential driver of cardiovascular risk in SLE patients. PLoS ONE, 2020, 15, e0229184.	2.5	22
98	The <i>Yersinia</i> Effector Protein YpkA Induces Apoptosis Independently of Actin Depolymerization. Journal of Immunology, 2007, 178, 6426-6434.	0.8	21
99	Wishing Away Inflammation? New Links between Serotonin and TNF Signaling. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2009, 9, 299-301.	3.4	21
100	Mechanisms of Autoimmunity in the Context of T-Cell Tolerance: Insights from Natural and Transgenic Animal Model Systems. Immunological Reviews, 1990, 118, 165-192.	6.0	19
101	Analysis of Human Immunodeficiency Virus Cytopathicity by Using a New Method for Quantitating Viral Dynamics in Cell Culture. Journal of Virology, 2005, 79, 4025-4032.	3.4	18
102	Natural killer cell expression of Ki67 is associated with elevated serum IL-15, disease activity and nephritis in systemic lupus erythematosus. Clinical and Experimental Immunology, 2019, 196, 226-236.	2.6	18
103	Development of IgA nephropathy-like glomerulonephritis associated with Wiskott–Aldrich syndrome protein deficiency. Clinical Immunology, 2012, 142, 160-166.	3.2	17
104	Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network. Genome Medicine, 2016, 8, 76.	8.2	17
105	Melorheostotic Bone Lesions Caused by Somatic Mutations in <i>MAP2K1</i> Have Deteriorated Microarchitecture and Periosteal Reaction. Journal of Bone and Mineral Research, 2019, 34, 883-895.	2.8	16
106	Prevalence and pathogenicity of autoantibodies in patients with idiopathic CD4 lymphopenia. Journal of Clinical Investigation, 2020, 130, 5326-5337.	8.2	16
107	AB0184â€FLOW CYTOMETRIC IMMUNOPHENOTYPING OF SALIVARY GLANDS IN PRIMARY SJÖGREN'S SYNDROME. , 2019, , .		15
108	The Autoimmune Lymphoproliferative Syndrome. Clinical Reviews in Allergy and Immunology, 2001, 20, 109-120.	6.5	14

#	Article	IF	Citations
109	Harnessing programmed cell death as a therapeutic strategy in rheumatic diseases. Nature Reviews Rheumatology, 2011, 7, 152-160.	8.0	14
110	A Rapid Ex Vivo Clinical Diagnostic Assay for Fas Receptor-Induced T Lymphocyte Apoptosis. Journal of Clinical Immunology, 2013, 33, 479-488.	3.8	14
111	Heterozygosity for transmembrane activator and calcium modulator ligand interactor A144E causes haploinsufficiency and pneumococcal susceptibility in mice. Journal of Allergy and Clinical Immunology, 2017, 139, 1293-1301.e4.	2.9	13
112	Feeding-induced resistance to acute lethal sepsis is dependent on hepatic BMAL1 and FXR signalling. Nature Communications, 2021, 12, 2745.	12.8	13
113	Inhibition of caspase-8 activity promotes protective Th1- and Th2-mediated immunity to Leishmania major infection. Journal of Leukocyte Biology, 2014, 95, 347-355.	3.3	12
114	Gld and Lpr Mice: Single Gene Mutant Models for Failed Self Tolerance. International Reviews of Immunology, 1994, 11, 231-244.	3.3	11
115	Inflammation-inducing Th1 and Th17 cells differ in their expression patterns of apoptosis-related molecules. Cellular Immunology, 2011, 271, 210-213.	3.0	11
116	Pilot clinical trial of intravenous doxycycline versus placebo for rheumatoid arthritis. Journal of Rheumatology, 2003, 30, 41-3.	2.0	11
117	Inhibition of T cell developmemt in thymic organ culture: Implications for the mechanism of action of cyclosporin A. European Journal of Immunology, 1990, 20, 753-757.	2.9	10
118	Cleavage of TL1A Differentially Regulates Its Effects on Innate and Adaptive Immune Cells. Journal of Immunology, 2018, 200, 1360-1369.	0.8	10
119	A FAScinating Receptor in Self-Tolerance. Immunity, 2007, 26, 545-547.	14.3	9
120	Cytokines and cytokine receptors. , 2013, , 108-135.		8
121	Molecular characterization of suppressor T cells. Transplantation Proceedings, 1988, 20, 1151-3.	0.6	8
122	Clinical Evaluation of Melorheostosis in the Context of a Natural History Clinical Study. JBMR Plus, 2019, 3, e10214.	2.7	7
123	Circulating TNF-like protein 1A (TL1A) is elevated early in rheumatoid arthritis and depends on TNF. Arthritis Research and Therapy, 2020, 22, 106.	3.5	6
124	Apoptosis Signaling Pathways. Current Protocols in Immunology, 2001, 44, Unit 11.9C.	3.6	5
125	Apoptosis Signaling Pathways. Current Protocols in Cytometry, 2002, 21, Unit 7.18.	3.7	5
126	Autoimmunity: Twenty Years in the Fas Lane. Journal of Immunology, 2012, 189, 5097-5100.	0.8	5

#	Article	IF	Citations
127	Characterization of autoantibodies, immunophenotype and autoimmune disease in a prospective cohort of patients with idiopathic CD4 lymphocytopenia. Clinical Immunology, 2021, 224, 108664.	3.2	5
128	Molecular Genetic Studies in Lymphocyte Apoptosis and Human Autoimmunity. Novartis Foundation Symposium, 1998, 215, 73-91.	1.1	5
129	T-Cell receptor and autoimmune disease. Immunologic Research, 1990, 9, 245-264.	2.9	4
130	Distribution and Functional Consequences of Somatic MAP2K1 Variants in Affected Skin Associated with Bone Lesions in Melorheostosis. Journal of Investigative Dermatology, 2021, 141, 688-692.e11.	0.7	3
131	Super-Resolution Imaging of Fas/CD95 Reorganization Induced by Membrane-Bound Fas Ligand Reveals Nanoscale Clustering Upstream of FADD Recruitment. Cells, 2022, 11, 1908.	4.1	3
132	A new web resource for NIH immunology. Nature Immunology, 2006, 7, 1007-1007.	14.5	1
133	Cytokines and cytokine receptors. , 2008, , 139-171.		1
134	Receptor-Mediated Lymphocyte Apoptosis in Health and Disease. Journal of Pediatric Gastroenterology and Nutrition, 2005, 40, S16.	1.8	0
135	All in the Family: The TNF-TNFR Superfamily in the Pathogenesis and Treatment of Rheumatoid Arthritis and other Inflammatory Diseases. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2005, 4, 587-596.	0.4	0
136	Breaking the Mold: Partnering with the National Institutes of Health Intramural Research Program to Accelerate PhD Training. Trends in Immunology, 2016, 37, 813-815.	6.8	0