Philip Hedrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4562149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A STANDARDIZED GENETIC DIFFERENTIATION MEASURE. Evolution; International Journal of Organic Evolution, 2005, 59, 1633-1638.	2.3	1,471
2	Assessing population structure: <i>F</i> _{ST} and related measures. Molecular Ecology Resources, 2011, 11, 5-18.	4.8	967
3	Gametic Disequilibrium Measures: Proceed With Caution. Genetics, 1987, 117, 331-341.	2.9	797
4	Inbreeding Depression in Conservation Biology. Annual Review of Ecology, Evolution, and Systematics, 2000, 31, 139-162.	6.7	755
5	PERSPECTIVE: HIGHLY VARIABLE LOCI AND THEIR INTERPRETATION IN EVOLUTION AND CONSERVATION. Evolution; International Journal of Organic Evolution, 1999, 53, 313-318.	2.3	705
6	Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Molecular Ecology, 2013, 22, 4606-4618.	3.9	562
7	A standardized genetic differentiation measure. Evolution; International Journal of Organic Evolution, 2005, 59, 1633-8.	2.3	441
8	Perspective: Highly Variable Loci and Their Interpretation in Evolution and Conservation. Evolution; International Journal of Organic Evolution, 1999, 53, 313.	2.3	437
9	Conservation genetics: where are we now?. Trends in Ecology and Evolution, 2001, 16, 629-636.	8.7	404
10	PERSPECTIVE: DETECTING ADAPTIVE MOLECULAR POLYMORPHISM: LESSONS FROM THE MHC. Evolution; International Journal of Organic Evolution, 2003, 57, 1707-1722.	2.3	404
11	Understanding Inbreeding Depression, Purging, and Genetic Rescue. Trends in Ecology and Evolution, 2016, 31, 940-952.	8.7	400
12	Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity, 1994, 73, 363-372.	2.6	375
13	Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends in Ecology and Evolution, 1998, 13, 305-311.	8.7	358
14	Genetic Polymorphism in Heterogeneous Environments: The Age of Genomics. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 67-93.	8.3	350
15	PATHOGEN RESISTANCE AND GENETIC VARIATION AT MHC LOCI. Evolution; International Journal of Organic Evolution, 2002, 56, 1902-1908.	2.3	315
16	Conservation Genetics: Techniques and Fundamentals. , 1992, 2, 30-46.		293
17	EVIDENCE FOR BALANCING SELECTION AT HLA. Genetics, 1983, 104, 449-456.	2.9	266
18	Evolutionary Genetics of the Major Histocompatibility Complex. American Naturalist, 1994, 143, 945-964.	2.1	239

#	Article	IF	CITATIONS
19	Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conservation Genetics, 2010, 11, 615-626.	1.5	238
20	Population genetics of malaria resistance in humans. Heredity, 2011, 107, 283-304.	2.6	223
21	Admixture dynamics in Hispanics: A shift in the nuclear genetic ancestry of a South American population isolate. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7234-7239.	7.1	221
22	Gene Flow and Genetic Restoration: The Florida Panther as a Case Study. Conservation Biology, 1995, 9, 996-1007.	4.7	198
23	The crucial role of genome-wide genetic variation in conservation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	196
24	What is the evidence for heterozygote advantage selection?. Trends in Ecology and Evolution, 2012, 27, 698-704.	8.7	173
25	Resistance to three pathogens in the endangered winter-run chinook salmon (Oncorhynchus) Tj ETQq1 1 0.7843 of Fisheries and Aquatic Sciences, 2002, 59, 966-975.	14 rgBT /(1.4	Overlock 10 1 164
26	Balancing selection and MHC. Genetica, 1998, 104, 207-214.	1.1	157
27	Post-2020 goals overlook genetic diversity. Science, 2020, 367, 1083-1085.	12.6	132
28	Directions in Conservation Biology: Comments on Caughley. Conservation Biology, 1996, 10, 1312-1320.	4.7	130
29	SEX: DIFFERENCES IN MUTATION, RECOMBINATION, SELECTION, GENE FLOW, AND GENETIC DRIFT. Evolution; International Journal of Organic Evolution, 2007, 61, 2750-2771.	2.3	130
30	A Conservation Plan for Native Fishes of the Lower Colorado River. BioScience, 2003, 53, 219.	4.9	124
31	Antagonistic pleiotropy and genetic polymorphism: a perspective. Heredity, 1999, 82, 126-133.	2.6	121
32	A NEW APPROACH TO MEASURING GENETIC SIMILARITY. Evolution; International Journal of Organic Evolution, 1971, 25, 276-280.	2.3	117
33	Major histocompatibility complex variation in red wolves: evidence for common ancestry with coyotes and balancing selection. Molecular Ecology, 2002, 11, 1905-1913.	3.9	116
34	Genetic Variation of Major Histocompatibility Complex and Microsatellite Loci: A Comparison in Bighorn Sheep. Genetics, 1997, 145, 421-433.	2.9	113
35	Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3336-3344.	2.6	108
36	Genetic evaluation of the three captive mexican wolf lineages. Zoo Biology, 1997, 16, 47-69.	1.2	103

#	Article	IF	CITATIONS
37	Parasite resistance and genetic variation in the endangered Gila topminnow. Animal Conservation, 2001, 4, 103-109.	2.9	103
38	Heterozygosity at individual amino acid sites: extremely high levels for HLA-A and -B genes Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5897-5901.	7.1	98
39	Genetic rescue in Isle Royale wolves: genetic analysis and the collapse of the population. Conservation Genetics, 2014, 15, 1111-1121.	1.5	98
40	Inbreeding Depression in the Speke's Gazelle Captive Breeding Program. Conservation Biology, 2000, 14, 1375-1384.	4.7	94
41	Is the decline of desert bighorn sheep from infectious disease the result of low MHC variation?. Heredity, 2001, 86, 439-450.	2.6	93
42	A STANDARDIZED GENETIC DIFFERENTIATION MEASURE. Evolution; International Journal of Organic Evolution, 2005, 59, 1633.	2.3	92
43	Genetic rescue and inbreeding depression in Mexican wolves. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2365-2371.	2.6	92
44	Major histocompatibility complex (MHC) variation in the endangered Mexican wolf and related canids. Heredity, 2000, 85, 617-624.	2.6	89
45	Captive breeding and the reintroduction of Mexican and red wolves. Molecular Ecology, 2008, 17, 344-350.	3.9	88
46	Conservation Genetics and North American Bison (Bison bison). Journal of Heredity, 2009, 100, 411-420.	2.4	88
47	Using microsatellite and MHC variation to identify species, ESUs, and MUs in the endangered Sonoran topminnow. Molecular Ecology, 2001, 10, 1399-1412.	3.9	87
48	No Inbreeding Depression Observed in Mexican and Red Wolf Captive Breeding Programs. Conservation Biology, 1999, 13, 1371-1377.	4.7	85
49	Mutation and linkage disequilibrium in human mtDNA. European Journal of Human Genetics, 2001, 9, 969-972.	2.8	80
50	EVALUATION OF d2, A MICROSATELLITE MEASURE OF INBREEDING AND OUTBREEDING, IN WOLVES WITH A KNOWN PEDIGREE. Evolution; International Journal of Organic Evolution, 2001, 55, 1256-1260.	2.3	77
51	Founder effect in an island population of bighorn sheep. Molecular Ecology, 2001, 10, 851-857.	3.9	75
52	MAJOR HISTOCOMPATIBILITY COMPLEX VARIATION IN THE ARABIAN ORYX. Evolution; International Journal of Organic Evolution, 2000, 54, 2145-2151.	2.3	73
53	Strong balancing selection at HLA loci: Evidence from segregation in South Amerindian families. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12452-12456.	7.1	71
54	Recent developments in conservation genetics. Forest Ecology and Management, 2004, 197, 3-19.	3.2	71

Philip Hedrick

#	Article	IF	CITATIONS
55	The impact of supplementation in winter-run chinook salmon on effective population size. , 2000, 91, 112-116.		70
56	Dynamics of Hybridization and Introgression in Red Wolves and Coyotes. Conservation Biology, 2006, 20, 1272-1283.	4.7	70
57	GENETIC VARIATION IN A HETEROGENEOUS ENVIRONMENT. II. TEMPORAL HETEROGENEITY AND DIRECTIONAL SELECTION. Genetics, 1976, 84, 145-157.	2.9	69
58	Effective Population Size in Winter-Run Chinook Salmon. Conservation Biology, 1995, 9, 615-624.	4.7	68
59	Fitness in the Endangered Gila Topminnow. Adaptabilidad del Poecilido de Gila en Peligro. Conservation Biology, 1997, 11, 162-171.	4.7	63
60	Molecular Variation and Evolutionarily Significant Units in the Endangered Gila Topminnow. Conservation Biology, 1999, 13, 108-116.	4.7	62
61	Genetic polymorphism in a temporally varying environment: effects of delayed germination or diapause. Heredity, 1995, 75, 164-170.	2.6	61
62	A TWO-LOCUS NEUTRALITY TEST: APPLICATIONS TO HUMANS, <i>E. COLI</i> AND LODGEPOLE PINE. Genetics, 1986, 112, 135-156.	2.9	60
63	MHC VARIATION IN THE ENDANGERED GILA TOPMINNOW. Evolution; International Journal of Organic Evolution, 1998, 52, 194-199.	2.3	59
64	Class I MHC polymorphism and evolution in endangered California Chinook and other Pacific salmon. Immunogenetics, 2001, 53, 483-489.	2.4	57
65	Female choice and variation in the major histocompatibility complex Genetics, 1992, 132, 575-581.	2.9	57
66	Large variance in reproductive success and the Ne/N ratio. Evolution; International Journal of Organic Evolution, 2005, 59, 1596-9.	2.3	57
67	Genetic variation and population structure in desert bighorn sheep: implications for conservation. Conservation Genetics, 2000, 1, 3-15.	1.5	56
68	Examining the cause of high inbreeding depression: analysis of wholeâ€genome sequence data in 28 selfed progeny of <i>Eucalyptus grandis</i> . New Phytologist, 2016, 209, 600-611.	7.3	56
69	Genetics and extinction and the example of Isle Royale wolves. Animal Conservation, 2019, 22, 302-309.	2.9	56
70	Balancing selection. Current Biology, 2007, 17, R230-R231.	3.9	54
71	Major Histocompatibility Complex Variation in the Endangered Przewalski's Horse. Genetics, 1999, 152, 1701-1710.	2.9	54
72	Inbreeding and fitness in captive populations: Lessons fromDrosophila. Zoo Biology, 1993, 12, 333-351.	1.2	52

#	Article	IF	CITATIONS
73	New reservoirs of HLA alleles: pools of rare variants enhance immune defense. Trends in Genetics, 2012, 28, 480-486.	6.7	52
74	HLA polymorphism in the Havasupai: evidence for balancing selection. American Journal of Human Genetics, 1993, 53, 943-52.	6.2	52
75	Linkage of viability genes to marker loci in selfing organisms. Heredity, 1990, 64, 67-72.	2.6	51
76	Major Histocompatibility Complex Differentiation in Sacramento River Chinook Salmon. Genetics, 1999, 151, 1115-1122.	2.9	50
77	PARTIAL INBREEDING: EQUILIBRIUM HETEROZYGOSITY AND THE HETEROZYGOSITY PARADOX. Evolution; International Journal of Organic Evolution, 1986, 40, 856-861.	2.3	46
78	MHC Polymorphism and the Design of Captive Breeding Programs: Simple Solutions Are Not the Answer. Conservation Biology, 1991, 5, 556-558.	4.7	45
79	Purging of inbreeding depression and fitness decline in bottlenecked populations of Drosophila melanogaster. Journal of Evolutionary Biology, 2001, 14, 595-601.	1.7	45
80	Negative-assortative mating for color in wolves. Evolution; International Journal of Organic Evolution, 2016, 70, 757-766.	2.3	45
81	Isolation by distance among California sea lion populations in Mexico: redefining management stocks. Molecular Ecology, 2009, 18, 1088-1099.	3.9	43
82	Sex Determination: Genetic Models for Oysters. Journal of Heredity, 2010, 101, 602-611.	2.4	43
83	Genotypic-specific habitat selection: a new model and its application. Heredity, 1990, 65, 145-149.	2.6	42
84	Resistance to malaria in humans: the impact of strong, recent selection. Malaria Journal, 2012, 11, 349.	2.3	42
85	Bottleneck(s) or Metapopulation in Cheetahs. Conservation Biology, 1996, 10, 897-899.	4.7	40
86	Factors influencing the extent of inbreeding depression: an example from Scots pine. Heredity, 1999, 82, 441-450.	2.6	40
87	Rapid communication / Communication rapide Invasion of transgenes from salmon or other genetically modified organisms into natural populations. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 841-844.	1.4	38
88	PERSPECTIVE: DETECTING ADAPTIVE MOLECULAR POLYMORPHISM: LESSONS FROM THE MHC. Evolution; International Journal of Organic Evolution, 2003, 57, 1707.	2.3	38
89	â€~Ground truth' for selection on CCR5-Δ32. Trends in Genetics, 2006, 22, 293-296.	6.7	37
90	Conservation genetics in aquatic species: General approaches and case studies in fishes and springsnails of arid lands. Aquatic Sciences, 2004, 66, 402-413.	1.5	36

#	Article	IF	CITATIONS
91	Measuring Relatedness between Inbred Individuals. Journal of Heredity, 2015, 106, 20-25.	2.4	36
92	The major histocompatibility complex (MHC) in declining populations: an example of adaptive variation. , 2002, , 97-113.		35
93	Genetic sex determination and extinction. Trends in Ecology and Evolution, 2006, 21, 55-57.	8.7	35
94	An improved method for estimating inbreeding depression in pedigrees. Zoo Biology, 1998, 17, 481-497.	1.2	34
95	Elephant Seals and the Estimation of a Population Bottleneck. Journal of Heredity, 1995, 86, 232-235.	2.4	33
96	Detecting inbreeding depression is difficult in captive endangered species. Animal Conservation, 1999, 2, 131-136.	2.9	33
97	PATHOGEN RESISTANCE AND GENETIC VARIATION AT MHC LOCI. Evolution; International Journal of Organic Evolution, 2002, 56, 1902.	2.3	32
98	Reevaluating and Broadening the Definition of Genetic Rescue. Conservation Biology, 2011, 25, 1069-1070.	4.7	32
99	MAINTENANCE OF GENETIC VARIATION WITH A FREQUENCY-DEPENDENT SELECTION MODEL AS COMPARED TO THE OVERDOMINANT MODEL. Genetics, 1972, 72, 771-775.	2.9	32
100	LETHALS IN FINITE POPULATIONS. Evolution; International Journal of Organic Evolution, 2002, 56, 654-657.	2.3	31
101	Canine Parvovirus Enteritis, Canine Distemper, and Major Histocompatibility Complex Genetic Variation in Mexican Wolves. Journal of Wildlife Diseases, 2003, 39, 909-913.	0.8	31
102	Heterozygote Advantage: The Effect of Artificial Selection in Livestock and Pets. Journal of Heredity, 2015, 106, 141-154.	2.4	31
103			

#	Article	IF	CITATIONS
109	Rapid communication / Communication rapide <p> Invasion of transgenes from salmon or other genetically modified organisms into natural populations. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 841-844.</p>	1.4	25
110	Evolutionary genetics and HLA: another classic example. Biological Journal of the Linnean Society, 1987, 31, 311-331.	1.6	22
111	How should we compare different genomic estimates of the strength of inbreeding depression?. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2492-E2493.	7.1	22
112	MHC Variation in the Endangered Gila Topminnow. Evolution; International Journal of Organic Evolution, 1998, 52, 194.	2.3	21
113	Rapid Decrease in Horn Size of Bighorn Sheep: Environmental Decline, Inbreeding Depression, or Evolutionary Response to Trophy Hunting?. Journal of Heredity, 2011, 102, 770-781.	2.4	21
114	Conservation genetics and the persistence and translocation of small populations: bighorn sheep populations as examples. Animal Conservation, 2014, 17, 106-114.	2.9	21
115	Negative-Assortative Mating in the White-Throated Sparrow. Journal of Heredity, 2018, 109, 223-231.	2.4	21
116	Rare alleles, MHC and captive breeding. , 1994, 68, 187-204.		19
117	Inbreeding depression in captive bighorn sheep. Animal Conservation, 2001, 4, 319-324.	2.9	18
118	Wolf of a different colour. Heredity, 2009, 103, 435-436.	2.6	18
119	Cattle ancestry in bison: explanations for higher mtDNA than autosomal ancestry. Molecular Ecology, 2010, 19, 3328-3335.	3.9	18
120	POPULATION GENETICS OF THE WHITE-PHASED "SPIRIT―BLACK BEAR OF BRITISH COLUMBIA. Evolution; International Journal of Organic Evolution, 2012, 66, 305-313.	2.3	18
121	Estimation of Male Gene Flow from Measures of Nuclear and Female Genetic Differentiation. Journal of Heredity, 2013, 104, 713-717.	2.4	18
122	Genomic Variation of Inbreeding and Ancestry in the Remaining Two Isle Royale Wolves. Journal of Heredity, 2017, 108, esw083.	2.4	18
123	Authors' Reply to Letter to the Editor: Continued improvement to genetic diversity indicator for CBD. Conservation Genetics, 2021, 22, 533-536.	1.5	18
124	Genetic variation and resistance to a bacterial infection in the endangered Gila topminnow. Animal Conservation, 2003, 6, 369-377.	2.9	17
125	Virgin birth, genetic variation and inbreeding. Biology Letters, 2007, 3, 715-716.	2.3	17
126	Partial Inbreeding: Equilibrium Heterozygosity and the Heterozygosity Paradox. Evolution; International Journal of Organic Evolution, 1986, 40, 856.	2.3	16

Philip Hedrick

#	Article	IF	CITATIONS
127	Sex-Dependent Habitat Selection and Genetic Polymorphism. American Naturalist, 1993, 141, 491-500.	2.1	16
128	Genetic Population Substructure in Bison at Yellowstone National Park. Journal of Heredity, 2012, 103, 360-370.	2.4	15
129	Conservation genetics and evolution in an endangered species: research in Sonoran topminnows*. Evolutionary Applications, 2012, 5, 806-819.	3.1	14
130	Heterozygote Advantage in a Finite Population: Black Color in Wolves. Journal of Heredity, 2014, 105, 457-465.	2.4	14
131	Response to Comment on "Parasite Selection for Immunogenetic Optimality". Science, 2004, 303, 957b-957.	12.6	13
132	Comment on "Parasite Selection for Immunogenetic Optimality". Science, 2004, 303, 957a-957.	12.6	13
133	Random Mating and Selection in Families Against Homozygotes for HLA in South Amerindians. Hereditas, 2004, 127, 51-58.	1.4	13
134	Premating, Not Postmating, Barriers Drive Genetic Dynamics in Experimental Hybrid Populations of the Endangered Sonoran Topminnow. Genetics, 2005, 171, 655-662.	2.9	13
135	Not surprisingly, no inheritance of a trait results in no evolution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4810.	7.1	13
136	Sex in diploids. Nature, 1989, 342, 231-231.	27.8	12
137	Neutrality or selection?. Nature, 1997, 387, 138-138.	27.8	12
138	Mexican Wolves Are a Valid Subspecies and an Appropriate Conservation Target. Journal of Heredity, 2015, 106, 415-416.	2.4	12
139	Assortative Mating and Linkage Disequilibrium. G3: Genes, Genomes, Genetics, 2017, 7, 55-62.	1.8	12
140	Hopi Indians, ?cultural? selection, and albinism. American Journal of Physical Anthropology, 2003, 121, 151-156.	2.1	11
141	The endangered Sonoran topminnow: Examination of species and ESUs using three mtDNA genes. Conservation Genetics, 2006, 7, 483-492.	1.5	11
142	Genetic evaluation of the initiation of a captive population: the general approach and a case study in the endangered pallid sturgeon (Scaphirhynchus albus). Conservation Genetics, 2012, 13, 1381-1391.	1.5	11
143	Gametic disequilibrium and multilocus estimation of selfing rates. Heredity, 1990, 65, 343-347.	2.6	9
144	INITIAL STAGES OF REPRODUCTIVE ISOLATION IN TWO SPECIES OF THE ENDANGERED SONORAN TOPMINNOW. Evolution; International Journal of Organic Evolution, 2003, 57, 2835-2841.	2.3	9

#	Article	IF	CITATIONS
145	Selection and Mutation for α Thalassemia in Nonmalarial and Malarial Environments. Annals of Human Genetics, 2011, 75, 468-474.	0.8	9
146	ROLE OF LINKAGE IN GENE FREQUENCY CHANGE OF COAT COLOR ALLELES IN MICE. Genetics, 1968, 58, 297-303.	2.9	9
147	Genetics and the environment in interspecific competition: a study using the sibling species Drosophila melanogaster and Drosophila simulans. Oecologia, 1996, 108, 72-78.	2.0	8
148	FACTORS RESPONSIBLE FOR A CHANGE IN INTERSPECIFIC COMPETITIVE ABILITY IN <i>DROSOPHILA</i> . Evolution; International Journal of Organic Evolution, 1972, 26, 513-522.	2.3	7
149	No bilateral asymmetry in wild-caught, endangered Poeciliopsis o. occidentalis(Gila topminnows). Heredity, 1998, 80, 214-217.	2.6	7
150	The influence of captive breeding management on founder representation and inbreeding in the â€~AlalÄ• the Hawaiian crow. Conservation Genetics, 2016, 17, 369-378.	1.5	7
151	An improved method for estimating inbreeding depression in pedigrees. Zoo Biology, 1998, 17, 481-497.	1.2	6
152	Desert Bighorn Sheep: Changes in Genetic Variation Over Time and the Impact of Merging Populations. Journal of Fish and Wildlife Management, 2014, 5, 3-13.	0.9	6
153	Planned cull endangers Swedish wolf population. Science, 2022, 377, 162-162.	12.6	5
154	Can segregation distortion influence gametic disequilibrium?. Genetical Research, 1988, 52, 237-242.	0.9	4
155	Effect of adult experience on oviposition choice and short-distance attraction inDrosophila buzzatii. Journal of Insect Behavior, 1990, 3, 689-697.	0.7	4
156	Estimation of self-fertilization rate and allelic frequencies in diploidized tetraploids. Heredity, 1991, 67, 259-264.	2.6	4
157	Genetic Evaluation of Captive Populations of Endangered Species and Merging of Populations: Gila Topminnows as an Example. Journal of Heredity, 2012, 103, 651-660.	2.4	4
158	Galapagos Islands Endemic Vertebrates: A Population Genetics Perspective. Journal of Heredity, 2019, 110, 137-157.	2.4	4
159	Testing for inbreeding and outbreeding depression in the endangered Gila topminnow. Animal Conservation, 1999, 2, 121-129.	2.9	4
160	Recombination and directional selection (reply). Nature, 1983, 302, 727-727.	27.8	3
161	Evolution of the human MHC: New haplotype frequency analysis is not informative. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23386-23387.	7.1	3
162	Detecting inbreeding depression is difficult in captive endangered species. Animal Conservation, 1999, 2, 131-136.	2.9	3

#	Article	IF	CITATIONS
163	Estimation of Male Gene Flow: Use Caution. Journal of Heredity, 2015, 106, esv082.	2.4	2
164	Genetics and recovery goals for Mexican wolves. Biological Conservation, 2017, 206, 210-211.	4.1	2
165	Passenger pigeon genomic diversity and extinction. Heredity, 2018, 120, 383-385.	2.6	2
166	Genetic rescue, not genetic swamping, is important for Mexican wolves. Biological Conservation, 2018, 224, 366-367.	4.1	2
167	Conservation biology: the impact of population biology and a current perspective. , 2004, , 347-365.		1
168	Coat colour in mouse populations selected for weight gain: support for hitchhiking, not pleiotropy. Genetical Research, 2013, 95, 4-13.	0.9	1
169	Ancestry dynamics in a South American population: The impact of gene flow and preferential mating. American Journal of Physical Anthropology, 2017, 163, 474-479.	2.1	1
170	Heterozygosity levels and estimation of selfâ€fertilization in an invasive species. Ecology and Evolution, 2020, 10, 14451-14452.	1.9	1
171	Comment on "Individual heterozygosity predicts translocation success in threatened desert tortoises― Science, 2021, 372, .	12.6	1
172	INITIAL STAGES OF REPRODUCTIVE ISOLATION IN TWO SPECIES OF THE ENDANGERED SONORAN TOPMINNOW. Evolution; International Journal of Organic Evolution, 2003, 57, 2835.	2.3	0
173	Analysis of negative and multiple HLA antigen disease associations. Tissue Antigens, 1985, 26, 293-306.	1.0	0
174	Fertility, Health, and Consanguineous Marriages. Science, 1991, 254, 1434-1434.	12.6	0
175	Parthenogenesis in California Condors: Impact on Genetic Variation. Journal of Heredity, 2022, 113, 215-216.	2.4	0