Tzyy-Jen Chiou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/456185/publications.pdf

Version: 2024-02-01

		109321	1	44013
58	8,171	35		57
papers	citations	h-index		g-index
62	62	62		6134
02	02	02		0131
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	A miRNA Involved in Phosphate-Starvation Response in Arabidopsis. Current Biology, 2005, 15, 2038-2043.	3.9	786
2	Regulation of Phosphate Homeostasis by MicroRNA in Arabidopsis. Plant Cell, 2006, 18, 412-421.	6.6	765
3	Signaling Network in Sensing Phosphate Availability in Plants. Annual Review of Plant Biology, 2011, 62, 185-206.	18.7	682
4	Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing. Plant Physiology, 2009, 151, 2120-2132.	4.8	631
5	pho2, a Phosphate Overaccumulator, Is Caused by a Nonsense Mutation in a MicroRNA399 Target Gene. Plant Physiology, 2006, 141, 1000-1011.	4.8	573
6	Regulatory Network of MicroRNA399 and <i>PHO2</i> by Systemic Signaling Â. Plant Physiology, 2008, 147, 732-746.	4.8	401
7	Sucrose is a signal molecule in assimilate partitioning. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4784-4788.	7.1	375
8	PHO2-Dependent Degradation of PHO1 Modulates Phosphate Homeostasis in <i>Arabidopsis</i> Cell, 2012, 24, 2168-2183.	6.6	308
9	NITROGEN LIMITATION ADAPTATION, a Target of MicroRNA827, Mediates Degradation of Plasma Membrane–Localized Phosphate Transporters to Maintain Phosphate Homeostasis in <i>Arabidopsis</i> . Plant Cell, 2013, 25, 4061-4074.	6.6	273
10	Identification of Downstream Components of Ubiquitin-Conjugating Enzyme PHOSPHATE2 by Quantitative Membrane Proteomics in <i>Arabidopsis</i> Plant Cell, 2013, 25, 4044-4060.	6.6	242
11	Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant Journal, 2000, 22, 531-541.	5.7	233
12	The role of microRNAs in sensing nutrient stress. Plant, Cell and Environment, 2007, 30, 323-332.	5.7	216
13	Complex Regulation of Two Target Genes Encoding SPX-MFS Proteins by Rice miR827 in Response to Phosphate Starvation. Plant and Cell Physiology, 2010, 51, 2119-2131.	3.1	188
14	Identification of plant vacuolar transporters mediating phosphate storage. Nature Communications, 2016, 7, 11095.	12.8	179
15	The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant Journal, 2001, 25, 281-293.	5.7	176
16	Molecular regulators of phosphate homeostasis in plants. Journal of Experimental Botany, 2009, 60, 1427-1438.	4.8	151
17	The Role of MicroRNAs in Phosphorus Deficiency Signaling. Plant Physiology, 2011, 156, 1016-1024.	4.8	143
18	Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7441-7445.	7.1	129

#	Article	IF	Citations
19	Differential Regulation of FLOWERING LOCUS C Expression by Vernalization in Cabbage and Arabidopsis. Plant Physiology, 2005, 137, 1037-1048.	4.8	117
20	The long-distance signaling of mineral macronutrients. Current Opinion in Plant Biology, 2009, 12, 312-319.	7.1	115
21	The Role of the miR399-PHO2 Module in the Regulation of Flowering Time in Response to Different Ambient Temperatures in Arabidopsis thaliana. Molecules and Cells, 2011, 32, 83-88.	2.6	113
22	Clonality and clonal evolution of hepatocellular carcinoma with multiple nodules. Hepatology, 1991, 13, 923-928.	7. 3	109
23	Sensing and Signaling of Phosphate Starvation: From Local to Long Distance. Plant and Cell Physiology, 2018, 59, 1714-1722.	3.1	83
24	Transgenic Plants That Express the Phytoplasma Effector SAP11 Show Altered Phosphate Starvation and Defense Responses. Plant Physiology, 2014, 164, 1456-1469.	4.8	81
25	Arabidopsis inositol pentakisphosphate 2â€kinase, <scp>A</scp> t <scp>IPK</scp> 1, is required for growth and modulates phosphate homeostasis at the transcriptional level. Plant Journal, 2014, 80, 503-515.	5.7	81
26	Arabidopsis inositol phosphate kinases <scp>IPK</scp> 1 and <scp>ITPK</scp> 1 constitute a metabolic pathway in maintaining phosphate homeostasis. Plant Journal, 2018, 95, 613-630.	5.7	79
27	Long-distance call from phosphate: systemic regulation of phosphate starvation responses. Journal of Experimental Botany, 2014, 65, 1817-1827.	4.8	77
28	Role of vacuoles in phosphorus storage and remobilization. Journal of Experimental Botany, 2017, 68, erw481.	4.8	73
29	Vacuolar Ca2+/H+ Transport Activity Is Required for Systemic Phosphate Homeostasis Involving Shoot-to-Root Signaling in Arabidopsis Â. Plant Physiology, 2011, 156, 1176-1189.	4.8	72
30	Molecular Cloning, Immunochemical Localization to the Vacuole, and Expression in Transgenic Yeast and Tobacco of a Putative Sugar Transporter from Sugar Beet. Plant Physiology, 1996, 110, 511-520.	4.8	60
31	MicroRNA-mediated surveillance of phosphate transporters on the move. Trends in Plant Science, 2014, 19, 647-655.	8.8	59
32	MicroRNA-mediated signaling and regulation of nutrient transport and utilization. Current Opinion in Plant Biology, 2017, 39, 73-79.	7.1	57
33	Abundance of tRNA-derived small RNAs in phosphate-starved Arabidopsis roots. Plant Signaling and Behavior, 2010, 5, 537-539.	2.4	47
34	Increased phosphate transport of <scp><i>A</i></scp> <i>rabidopsis thaliana</i> â€ <scp>P</scp> ht1;1 by siteâ€directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions. Plant, Cell and Environment, 2015, 38, 2012-2022.	5.7	47
35	Phosphate excess increases susceptibility to pathogen infection in rice. Molecular Plant Pathology, 2020, 21, 555-570.	4.2	45
36	Intracellular phosphate sensing and regulation of phosphate transport systems in plants. Plant Physiology, 2021, 187, 2043-2055.	4.8	39

#	Article	IF	Citations
37	Evolution of micro <scp>RNA</scp> 827 targeting in the plant kingdom. New Phytologist, 2018, 217, 1712-1725.	7.3	34
38	The Impact of Phosphorus on Plant Immunity. Plant and Cell Physiology, 2021, 62, 582-589.	3.1	32
39	Overexpression of Acyl Carrier Protein-1 Alters Fatty Acid Composition of Leaf Tissue in Arabidopsis. Plant Physiology, 2001, 127, 222-229.	4.8	29
40	STRESS INDUCED FACTOR 2 Regulates Arabidopsis Stomatal Immunity through Phosphorylation of the Anion Channel SLAC1. Plant Cell, 2020, 32, 2216-2236.	6.6	28
41	Biologic significance of the detection of HBsAg and HBcAg in liver and tumor from 204 HBsAg-positive patients with primary hepatocellular carcinoma. Hepatology, 1989, 9, 747-750.	7. 3	27
42	Upstream Open Reading Frame and Phosphate-Regulated Expression of Rice <i>OsNLA1</i> Controls Phosphate Transport and Reproduction. Plant Physiology, 2020, 182, 393-407.	4.8	22
43	Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana. BMC Genomics, 2015, 16, 1009.	2.8	20
44	Phosphite-Mediated Suppression of Anthocyanin Accumulation Regulated by Mitochondrial ATP Synthesis and Sugars in Arabidopsis. Plant and Cell Physiology, 2018, 59, 1158-1169.	3.1	19
45	Long-distance movement and differential targeting of microRNA399s. Plant Signaling and Behavior, 2008, 3, 730-732.	2.4	18
46	Molecular analysis of plant sugar and amino acid transporters. Journal of Experimental Botany, 1996, 47, 1205-1210.	4.8	17
47	Phosphate transporters of Medicago truncatula and arbuscular mycorrhizal fungi. Plant and Soil, 2002, 244, 239-245.	3.7	17
48	Spatial Profiles of Phosphate in Roots Indicate Developmental Control of Uptake, Recycling, and Sequestration. Plant Physiology, 2020, 184, 2064-2077.	4.8	16
49	Phosphateâ€induced resistance to pathogen infection in Arabidopsis. Plant Journal, 2022, 110, 452-469.	5.7	14
50	Evolution of expression of hepatitis B surface and core antigens (HBsAg, HBcAg) in resected primary and recurrent hepatocellular carcinoma in HBsAg carriers in Taiwan. Correlation with local host immune response. Cancer, 1988, 62, 915-921.	4.1	12
51	The Diverse Roles of Rice PHO1 in Phosphate Transport: From Root to Node to Grain. Plant and Cell Physiology, 2020, 61, 1384-1386.	3.1	12
52	Phosphate transporter PHT1;1 is a key determinant of phosphorus acquisition in Arabidopsis natural accessions. Plant Physiology, 2022, 190, 682-697.	4.8	12
53	Structure–Function Analysis Reveals Amino Acid Residues of Arabidopsis Phosphate Transporter AtPHT1;1 Crucial for Its Activity. Frontiers in Plant Science, 2019, 10, 1158.	3.6	11
54	Phosphorus Focus Editorial. Plant Physiology, 2011, 156, 987-988.	4.8	10

Tzyy-Jen Chiou

#	Article	IF	CITATIONS
55	Loss-of-function of NITROGEN LIMITATION ADAPTATION confers disease resistance in Arabidopsis by modulating hormone signaling and camalexin content. Plant Science, 2022, 323, 111374.	3.6	5
56	Development of an In Planta system to monitor phosphorus status by agroinfiltration and agroinjection. Plant and Soil, 2016, 409, 313-328.	3.7	2
57	Editorial overview: Cell signaling and gene regulation: nutrient sensing, signaling, and transport. Current Opinion in Plant Biology, 2017, 39, iii-v.	7.1	2
58	Editorial Feature: Meet the PCP Editor—Tzyy-Jen Chiou. Plant and Cell Physiology, 2021, 62, 1357-1358.	3.1	0