Mark A Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4561490/publications.pdf

Version: 2024-02-01

200 papers

8,878 citations

42 h-index

66343

80 g-index

200 all docs 200 docs citations

times ranked

200

4858 citing authors

#	Article	IF	CITATIONS
1	Time-lens photon Doppler velocimetry (TL-PDV). Review of Scientific Instruments, 2021, 92, 044703.	1.3	5
2	Minimally-invasive lensless computational microendoscopy leveraging modal decomposition., 2021,,.		0
3	Unclonable photonic keys hardened against machine learning attacks. APL Photonics, 2020, 5, .	5.7	19
4	High-speed compressive line-scanned two photon microscopy. , 2020, , .		0
5	GHz-rate positive conversion efficiency via FWM in multi-layer SiNx/a-Si:H waveguides. , 2020, , .		2
6	Fast and Wide Field-of-View Microscopy using a Coded Aperture. , 2020, , .		0
7	Lens-Free Computational Epi-Fluorescence Microendoscopy. , 2020, , .		1
8	Kilohertz frame rate snapshot hyperspectral imaging of metal reactive materials. Applied Optics, 2020, 59, 10406.	1.8	5
9	Integrated Photonic Physical Unclonable Function using Highly Nonlinear Amorphous Silicon. , 2019, ,		O
10	THz field detection in graphene using deep neural networks. Applied Physics Letters, 2019, 115, .	3.3	4
11	A multi-layer platform for low-loss nonlinear silicon photonics. APL Photonics, 2019, 4, .	5.7	12
12	Integrated Photonic Physical Unclonable Function using Highly Nonlinear Amorphous Silicon. , 2019, , .		0
13	A minimally invasive lens-free computational microendoscope. Science Advances, 2019, 5, eaaw5595.	10.3	52
14	Optical coherence tomography using physical domain data compression to achieve MHz A-scan rates. Optics Express, 2019, 27, 36329.	3.4	6
15	Highly nonlinear amorphous silicon micro-cavity as a platform for secure authentication. , 2019, , .		1
16	Ultrahigh-speed spatial pattern projection using a nonlinear optical time lens for fast single-pixel imaging. , 2019 , , .		1
17	Passive Timing Stabilization over a 33-km Single Mode Fiber Link using Temporal Imaging. , 2018, , .		0
18	Silicon Photonic Cryptographic Engines. , 2018, , .		0

#	Article	IF	CITATIONS
19	Passive timing stabilization over a 33-km single mode fiber link using temporal imaging. , 2018, , .		O
20	Photonic Physical Unclonable Functions using Silicon Nitride Spiral Waveguides., 2018,,.		0
21	Widefield compressive multiphoton microscopy. Optics Letters, 2018, 43, 2989.	3.3	16
22	Secure communications using nonlinear silicon photonic keys. Optics Express, 2018, 26, 4710.	3.4	15
23	Time-Domain Compressive FMCW LADAR. , 2018, , .		0
24	All-Optical Multiorder Distortion Elimination in a Phase-Modulated Microwave Photonic Link. Journal of Lightwave Technology, 2017, 35, 855-861.	4.6	6
25	Light transport through ultrafast chaotic micro-cavities for photonic physical unclonable functions. , 2017, , .		2
26	Conversion for the Better: A Broadband Highly Efficient Microwave Photonics Detector. IEEE Microwave Magazine, 2017, 18, 58-62.	0.8	1
27	Wavelength multicasting through four-wave mixing with an optical comb source. Optics Express, 2017, 25, 9276.	3.4	8
28	Silicon photonic physical unclonable function. Optics Express, 2017, 25, 12710.	3.4	50
29	All-optical demultiplexing of Nyquist OTDM signal using a biorthogonal Nyquist gate. Optics Express, 2017, 25, 33250.	3.4	5
30	High-speed all-optical Haar wavelet transform for real-time image compression. Optics Express, 2017, 25, 9802.	3.4	31
31	Compressive fluorescence imaging using a multi-core fiber and spatially dependent scattering. Optics Letters, 2017, 42, 109.	3.3	28
32	High-Speed Compressive Measurement using a Time-Lens Spectral Shaper. , 2017, , .		1
33	Photonic Physical Unclonable Functions using Silicon Nitride Spiral Cavities. , 2017, , .		4
34	Compressed Sensing of Sparse RF Signals Based on Silicon Photonic Microcavities. , 2017, , .		3
35	Encrypted Communication using Chaotic Silicon Photonic Microcavities. , 2017, , .		0
36	High-speed spectral shearing contrast time-stretch microscopy. , 2016, , .		0

#	Article	IF	CITATIONS
37	High-speed all-optical NAND/AND logic gates using four-wave mixing Bragg scattering. Optics Letters, 2016, 41, 3320.	3.3	32
38	Compressive high speed flow microscopy with motion contrast (Conference Presentation)., 2016,,.		0
39	Single-pixel imaging using compressed sensing and wavelength-dependent scattering. Optics Letters, 2016, 41, 886.	3.3	55
40	Secure Authentication using the Ultrafast Response of Chaotic Silicon Photonic Microcavities. , 2016, , .		2
41	Real-Time Image Compression Based on All-Optical Haar Wavelet Transform. , 2016, , .		O
42	72 MHz A-scan optical coherence tomography using continuous high-rate photonically-enabled compressed sensing (CHiRP-CS). , 2016, , .		2
43	Linearization of phase-modulated analog links using four-wave mixing in an optical comb source. , $2016, , .$		2
44	Compressive optical imaging using a multi-core fiber and spatially dependent scattering. , 2016, , .		1
45	Compressive ultrahigh-speed continuous imaging using spectrally structured ultrafast laser pulses. Proceedings of SPIE, 2015, , .	0.8	0
46	Compressive optical imaging using wavelength dependent scattering., 2015,,.		0
47	High-speed compressed sensing measurement using spectrally-encoded ultrafast laser pulses. , 2015, , .		3
48	Ultrawideband RF compressed sensing using spectrally-encoded ultrafast laser pulses. , 2015, , .		0
49	Broadband receiver-based distortion elimination in phase-modulated analog optical links using four-wave mixing. Proceedings of SPIE, 2015, , .	0.8	1
50	All-optical NAND logic gate using four-wave mixing. , 2015, , .		0
51	High-speed flow microscopy using compressed sensing with ultrafast laser pulses. Optics Express, 2015, 23, 10521.	3.4	66
52	Wavelength-agile near-IR optical parametric oscillator using a deposited silicon waveguide. Optics Express, 2015, 23, 15431.	3.4	24
53	Ultrawideband compressed sensing of arbitrary multi-tone sparse radio frequencies using spectrally encoded ultrafast laser pulses. Optics Letters, 2015, 40, 3045.	3.3	30
54	A High Speed All-Optical NAND Logic Gate Using Four-Wave Mixing. , 2015, , .		2

#	Article	IF	CITATIONS
55	Continuous 119.2-GSample/s photonic compressed sensing of sparse microwave signals. , 2015, , .		3
56	Continuous high-rate photonically-enabled compressed sensing (CHiRP-CS) for high speed flow microscopy. , $2015, , .$		0
57	Photonically-Enabled Microwave Function Generation Via Tailored Distortion. , 2015, , .		0
58	Efficient Wavelength Multicasting through Four-Wave Mixing with a Comb Source. , 2014, , .		1
59	All-optical demultiplexing of Nyquist OTDM using a Nyquist gate. , 2014, , .		2
60	Third-Order Distortion Elimination in Phase-Encoded Analog-Photonic Links using a Four-Wave Mixing Comb Source. , 2014, , .		1
61	Linearization of phase-modulated analog optical links using a four-wave mixing comb source. Optics Express, 2014, 22, 30899.	3.4	11
62	Multichannel photon-pair generation using hydrogenated amorphous silicon waveguides. Optics Letters, 2014, 39, 914.	3.3	23
63	High-speed ultrawideband compressed sensing of sparse radio frequency signals. , 2014, , .		3
64	High-speed flow imaging utilizing spectral-encoding of ultrafast pulses and compressed sensing. , 2014, , .		13
65	Ultralow-power 160-to-10Gb/s optical demultiplexing using four-wave mixing in deposited silicon waveguides. , 2013, , .		1
66	Application of space–time duality to ultrahigh-speed optical signal processing. Advances in Optics and Photonics, 2013, 5, 274.	25.5	279
67	Experimental demonstration of coherent OCDMA using heterodyne detection. Optics Letters, 2013, 38, 2351.	3.3	2
68	Simulation and experimental demonstration of coherent OCDMA using spectral line pairing and heterodyne detection. , 2013, , .		0
69	Experimental Demonstration of Coherent OCDMA using Spectral Line Pairing and Heterodyne Detection. , 2013, , .		1
70	Full 160-Gb/s OTDM to $16 ilde{A}$ —10-Gb/s WDM conversion using a single nonlinear device. , 2013, , .		0
71	High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals. Optics Letters, 2013, 38, 4892.	3.3	130
72	Full 160-Gb/s OTDM to 16x10-Gb/s WDM conversion with a single nonlinear interaction. Optics Express, 2013, 21, 508.	3.4	71

#	Article	IF	CITATIONS
73	Highly sensitive ultrafast pulse characterization using hydrogenated amorphous silicon waveguides. Optics Express, 2013, 21, 31229.	3.4	7
74	Modelocking and femtosecond pulse generation in chip-based frequency combs. Optics Express, 2013, 21, 1335.	3.4	217
75	Full 16 channel OTDM-WDM conversion using a temporal optical Fourier processor. , 2013, , .		0
76	Wavelength-Agile Near-IR Chip-Based Optical Parametric Oscillator using a Deposited Silicon Waveguide. , 2013, , .		0
77	Highly-Sensitive Ultrafast Pulse Characterization Utilizing Four-wave Mixing in an Amorphous Silicon Nanowaveguide. , 2013, , .		0
78	An All-Optical Sample-and-Hold Architecture Incorporating Amplitude Jitter Suppression. , 2012, , .		0
79	Broadband parametric frequency comb generation with a $1-\hat{1}/4$ m pump source. Optics Express, 2012, 20, 26935.	3.4	33
80	Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Optics Letters, 2012, 37, 1685.	3.3	176
81	Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation. Optics Express, 2012, 20, 17600.	3.4	10
82	Ultra-Wideband Gain in Microwave Photonic Links using Four-Wave Mixing. , 2012, , .		9
83	On-Chip High Repetition Rate Femtosecond Source. , 2012, , .		0
84	Characterization of Nonlinear Optical Crosstalk in Silicon Nanowaveguides. IEEE Photonics Technology Letters, 2012, 24, 185-187.	2.5	15
85	Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides. Optics Express, 2012, 20, 24600.	3.4	90
86	High-Performance Silicon-Nitride-Based Multiple-Wavelength Source. IEEE Photonics Technology Letters, 2012, 24, 1375-1377.	2.5	67
87	Bit-error rate improvement through all-optical signal regeneration in deposited silicon waveguides. , 2012, , .		0
88	Ultralow-Power 160-Gb/s All-Optical Demultiplexing in Hydrogenated Amorphous Silicon Waveguides. , 2012, , .		1
89	Silicon-Chip Femtosecond Source. , 2012, , .		0
90	Spectral and Temporal Properties of a Microresonator Optical Frequency Comb. , 2012, , .		0

#	Article	IF	Citations
91	Continuous Wavelength Conversion of 40-Gb/s Data Over 100 nm Using a Dispersion-Engineered Silicon Waveguide. IEEE Photonics Technology Letters, 2011, 23, 73-75.	2.5	24
92	Harmonic generation in silicon nitride ring resonators. Optics Express, 2011, 19, 11415.	3.4	255
93	Simultaneous wavelength conversion of ASK and DPSK signals based on four-wave-mixing in dispersion engineered silicon waveguides. Optics Express, 2011, 19, 12172.	3.4	13
94	Scalable ultrahigh-speed optical transmultiplexer using a time lens. Optics Express, 2011, 19, 14051.	3.4	15
95	Silicon-based monolithic optical frequency comb source. Optics Express, 2011, 19, 14233.	3.4	162
96	Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides. Optics Letters, 2011, 36, 1263.	3.3	62
97	Ultrahigh-Speed Optical Processing Using Space-Time Duality. Optics and Photonics News, 2011, 22, 29.	0.5	9
98	Continuous-Wave Mid-Infrared Frequency Conversion in Silicon Nanowaveguides., 2011,,.		0
99	Scalable 1.28-Tb/s Transmultiplexer Using a Time Lens. , 2011, , .		1
100	Octave-Spanning Supercontinuum Generation in CMOS-Compatible Silicon Nitride Waveguides. , 2011, , .		0
101	Octave-Spanning Supercontinuum Generation in CMOS-Compatible Silicon Nitride Waveguides. , 2011, , .		2
102	Ultrabroadband Frequency Comb Generation at $1\hat{l}$ 4m in a Silicon-Nitride Ring Resonator. , 2011, , .		0
103	Octave-Spanning Supercontinuum Generation in CMOS-Compatible Silicon Nitride Waveguides. , 2011, , .		1
104	First 80-Gb/s and 160-Gb/s Wavelength-Converted Data Stream Measurements in a Silicon Waveguide. , 2010, , .		3
105	Large Enhancement of Wavelength Conversion in Silicon Nanowaveguides via Free-Carrier Removal., 2010,,.		1
106	Ultrafast, Single-Shot Phase and Amplitude Measurement via a Temporal Imaging Approach. , 2010, , .		4
107	CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photonics, 2010, 4, 37-40.	31.4	847
108	On-chip wavelength multicasting of 3×320-Gb/s pulsed-RZ optical data. , 2010, , .		2

#	Article	IF	CITATIONS
109	Broadband wavelength conversion of 10-Gb/s DPSK signals in silicon waveguides. , 2010, , .		O
110	CMOS-Compatible Microresonator-Based Optical Frequency Comb. , 2010, , .		0
111	Optical Crosstalk in Silicon Nanowaveguides. , 2010, , .		1
112	Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides. Optics Express, 2010, 18, 3582.	3.4	176
113	Temporal-imaging system with simple external-clock triggering. Optics Express, 2010, 18, 14262.	3.4	37
114	Wavelength multicasting in silicon photonic nanowires. Optics Express, 2010, 18, 18047.	3.4	77
115	Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. Optics Express, 2010, 18, 26525.	3.4	139
116	Frequency conversion over two-thirds of an octave in silicon nanowaveguides. Optics Express, 2010, 18, 1904.	3.4	136
117	Optical Crosstalk in a Silicon Nanowaveguide. , 2010, , .		0
118	Broadband Continuous Wavelength Conversion of 10-Gb/s Data in Silicon Waveguides Spanning S-, C-, and L-Bands. , $2010, \dots$		1
119	Mid-Infrared Broadband Continuous-Wave Parametric-Mixing in Silicon Nanowaveguides. , 2010, , .		1
120	Visible Harmonic Generation in CMOS-Compatible Integrated Photonic Devices. , 2010, , .		0
121	Four-wave Mixing in Integrated Silicon Nitride Waveguides. , 2009, , .		7
122	Dispersion and nonlinearity compensation using spectral phase conjugation. , 2009, , .		0
123	Ultrafast waveform compression using a time-domain telescope. Nature Photonics, 2009, 3, 581-585.	31.4	158
124	Ultrafast Measurements Using a Silicon- Chip-Based Temporal Lens. Optics and Photonics News, 2009, 20, 40.	0.5	13
125	High-speed optical sampling using a silicon-chip temporal magnifier. Optics Express, 2009, 17, 4324.	3.4	125
126	High-resolution spectroscopy using a frequency magnifier. Optics Express, 2009, 17, 5691.	3.4	40

#	Article	IF	CITATIONS
127	Silicon-waveguide-coupled high-Q chalcogenide microspheres. Optics Express, 2009, 17, 5998.	3.4	50
128	1 $\hat{1}$ /4s tunable delay using parametric mixing and optical phase conjugation in Si waveguides. Optics Express, 2009, 17, 7004.	3.4	37
129	$1\hat{l}$ 4s tunable delay using parametric mixing and optical phase conjugation in Si waveguides: reply. Optics Express, 2009, 17, 16029.	3.4	2
130	Spectral phase conjugation via temporal imaging. Optics Express, 2009, 17, 20605.	3.4	43
131	Demonstration of Broadband Wavelength Conversion at 40 Gb/s in Silicon Waveguides. IEEE Photonics Technology Letters, 2009, 21, 182-184.	2.5	97
132	Large bandwidth continuously tunable delay using silicon microring resonators. , 2009, , .		0
133	High-Speed Optical Signal Sampling via Temporal Magnification. , 2009, , .		0
134	First Demonstration of On-Chip Wavelength Multicasting. , 2009, , .		7
135	Generation of 270 Gb/s NRZ Data Packets from a 10-Gb/s Signal Using a Temporal Telescopic System. , 2009, , .		1
136	Frequency Conversion in Silicon Waveguides Over Two-Thirds of an Octave. , 2009, , .		7
137	160-Gb/s Broadband Wavelength Conversion on Chip Using Dispersion-Engineered Silicon Waveguides. , 2009, , .		8
138	Packet Compression from a 10-Gb/s to 270-Gb/s using a Temporal Telescopic System. , 2009, , .		0
139	CMOS-Compatible Multiple Wavelength Source. , 2009, , .		0
140	Temporal Imaging System with Simple External Clock Synchronization., 2009,,.		0
141	Silicon-Chip-Based Single-Shot Ultrafast Optical Oscilloscope. Springer Series in Chemical Physics, 2009, , 932-934.	0.2	0
142	Single-Shot Optical Sampling of Ultrafast Signals Using a Silicon-Chip Time Lens. , 2009, , .		0
143	100× Frequency Magnification Using a Time-Lens-Based Spectral Imaging System. , 2009, , .		0
144	Ultrafast Optical Waveform Characterization and Generation Using a Four-Wave Mixing Time Lens on a Silicon Chip. , 2009 , , .		0

#	Article	IF	CITATIONS
145	Spectral phase conjugation using temporal imaging. , 2009, , .		O
146	Ultrashort Free-Carrier Lifetime for Low Nonlinear Loss in Silicon Waveguides., 2009,,.		1
147	Silicon-chip-based ultrafast optical oscilloscope. Nature, 2008, 456, 81-84.	27.8	442
148	Signal regeneration using low-power four-wave mixing on silicon chip. Nature Photonics, 2008, 2, 35-38.	31.4	350
149	A Simplified Optical Correlator and Its Application to Packet-Header Recognition. IEEE Photonics Technology Letters, 2008, 20, 487-489.	2.5	25
150	Optical time lens based on four-wave mixing on a silicon chip. Optics Letters, 2008, 33, 1047.	3.3	199
151	Nonlinear optics in photonic nanowires. Optics Express, 2008, 16, 1300.	3.4	363
152	Ultra-low power parametric frequency conversion in a silicon microring resonator. Optics Express, 2008, 16, 4881.	3.4	247
153	Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides. Optics Express, 2008, 16, 10349.	3.4	40
154	Generation of sub-100-fs pulses from a microstructure-fiber-based optical parametric oscillator. Optics Express, 2008, 16, 18050.	3.4	27
155	Low-power optical regeneration using four-wave mixing in a silicon chip. , 2008, , .		5
156	Experimental demonstration of a high-speed optical correlator for phase-modulated packets. , 2008, , .		2
157	All-Optical Packet-Header Recognition at 100 Gb/s Using a Simplified 4-f Correlator. , 2008, , .		0
158	Time lens for ultrafast signal measurements based on four-wave mixing in silicon. , 2008, , .		0
159	A novel optical correlator and its application to packet-header recognition. , 2008, , .		0
160	Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber. , 2008, , .		1
161	Frequency-Resolved Optical Gating on a Silicon Photonic Chip. , 2008, , .		0
162	Silicon-Chip-Based Single-Shot Ultrafast Optical Oscilloscope. , 2008, , .		0

#	Article	IF	CITATIONS
163	Large temporal magnification using four-wave mixing on a silicon chip. , 2008, , .		O
164	Silicon-coupled, high-Q chalcogenide microspheres. , 2008, , .		0
165	Ultra-low-power parametric frequency conversion of high data rates on-chip. , 2008, , .		1
166	Silicon-chip-based single-shot ultrafast optical oscilloscope. , 2008, , .		1
167	Tunable delays via conversion-dispersion using on-chip four-wave-mixing. , 2008, , .		3
168	Optimal Pulse Compression via Sequential Filamentation. , 2007, , .		0
169	Wavelength dependence of the ultrafast third-order nonlinearity of Silicon. , 2007, , .		6
170	Integrated Optical Regenerator on a Silicon Chip., 2007,,.		1
171	Spatio-Spectral-Shaping for Pulse Compression via Sequential Filamentation. , 2007, , .		0
172	Four-wave-mixing parametric oscillations in dispersion-compensated high- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> silica microspheres. Physical Review A, 2007, 76, .	2.5	100
173	Parametric oscillation via dispersion-compensation in high-Q microspheres. , 2007, , .		0
174	Optimal pulse compression via sequential filamentation. , 2007, , .		0
175	Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators. Optics Express, 2007, 15, 1474.	3.4	74
176	All-optical regeneration on a silicon chip. Optics Express, 2007, 15, 7802.	3.4	64
177	Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Optics Express, 2007, 15, 12949.	3.4	295
178	Microstructure-fiber-based ultrafast optical parametric oscillators., 2007,,.		0
179	Broad-band continuous-wave four-wave mixing in silicon wire waveguides. , 2007, , .		1
180	Optical Regeneration in a Silicon Waveguide. , 2007, , .		0

#	Article	IF	CITATIONS
181	Soliton-effect pulse compression of supercontinuum in photonic nanowires. Springer Series in Chemical Physics, 2007, , 86-88.	0.2	0
182	Dispersion-Compensation in High-Q Silica Microspheres for Parametric Oscillation. , 2007, , .		0
183	All-optical slow-light on a photonic chip. Optics Express, 2006, 14, 2317.	3.4	159
184	Tailored anomalous group-velocity dispersion in silicon channel waveguides. Optics Express, 2006, 14, 4357.	3.4	373
185	Generation of correlated photons in nanoscale silicon waveguides. Optics Express, 2006, 14, 12388.	3.4	317
186	Fiber-Based Optical Parametric Oscillator with 50-mW Average Output Power and 200 nm of Wavelength Tunability., 2006,, LMF7.		0
187	Broad-band optical parametric gain on a silicon photonic chip. Nature, 2006, 441, 960-963.	27.8	794
188	Optimal sizes of silica microspheres for linear and nonlinear optical interactions. Applied Physics B: Lasers and Optics, 2006, 83, 303-309.	2.2	19
189	Broad-bandwidth optical gain and efficient wavelength conversion in silicon waveguides. , 2006, , .		0
190	Raman-induced slow-light on a silicon photonic chip. , 2006, , .		0
191	Tailored anomalous group-velocity dispersion in silicon waveguides. , 2006, , .		1
192	Broad-bandwidth Optical Amplification and Efficient Wavelength Conversion in Silicon Waveguides., 2006,,.		2
193	Raman Slow Light in Fibers and on Chip. , 2006, , .		1
194	Pulse self-compression of supercontinuum in photonic nanowires. , 2006, , .		1
195	Single-cycle pulse generation in photonic nanowires. , 2006, , .		0
196	Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation. Applied Physics B: Lasers and Optics, 2005, 81, 363-367.	2.2	62
197	Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires. Optics Express, 2005, 13, 6848.	3.4	151
198	Optimal waveguide dimensions for nonlinear interactions. Optics Express, 2004, 12, 2880.	3.4	211

#	Article	IF	CITATIONS
199	Ultra-low threshold supercontinuum generation in sub-wavelength waveguides. Optics Express, 2004, 12, 3137.	3.4	106
200	All-optical switching on a silicon chip. Optics Letters, 2004, 29, 2867.	3.3	205