
Sixto Gimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4560623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Switchable All Inorganic Halide Perovskite Nanocrystalline Photoelectrodes for Solarâ€Driven Organic Transformations. Solar Rrl, 2022, 6, 2100723.	5.8	5
2	Role of Pd in the Electrochemical Hydrogenation of Nitrobenzene Using CuPd Electrodes. Advanced Sustainable Systems, 2022, 6, .	5.3	16
3	Application of Halide Perovskite Nanocrystals in Solarâ€Driven Photo(electro)Catalysis. Solar Rrl, 2022, 6, .	5.8	5
4	Direct Observation of the Chemical Transformations in BiVO ₄ Photoanodes upon Prolonged Lightâ€Aging Treatments. Solar Rrl, 2022, 6, .	5.8	5
5	Spectroelectrochemical Analysis of the Water Oxidation Mechanism on Doped Nickel Oxides. Journal of the American Chemical Society, 2022, 144, 7622-7633.	13.7	66
6	Exploiting the synergistic catalytic effects of <scp>CoPi</scp> nanostructures on Zrâ€doped highly ordered <scp> TiO ₂ </scp> nanotubes for efficient solar water oxidation. International Journal of Energy Research, 2022, 46, 12608-12622.	4.5	7
7	Direct Observation of the Chemical Transformations in BiVO ₄ Photoanodes upon Prolonged Lightâ€Aging Treatments. Solar Rrl, 2022, 6, .	5.8	0
8	Laser-Reduced BiVO ₄ for Enhanced Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 33200-33210.	8.0	15
9	Improved solar water splitting performance of BiVO4 photoanode by the synergistic effect of Zr-Mo co-doping and FeOOH Co-catalyst layer. Materials Letters, 2022, 325, 132799.	2.6	5
10	Self-supported ultra-active NiO-based electrocatalysts for the oxygen evolution reaction by solution combustion. Journal of Materials Chemistry A, 2021, 9, 12700-12710.	10.3	14
11	Pushâ€Pull Electronic Effects in Surfaceâ€Active Sites Enhance Electrocatalytic Oxygen Evolution on Transition Metal Oxides. ChemSusChem, 2021, 14, 1595-1601.	6.8	10
12	Interfacial Engineering at Quantum Dot-Sensitized TiO ₂ Photoelectrodes for Ultrahigh Photocurrent Generation. ACS Applied Materials & Interfaces, 2021, 13, 6208-6218.	8.0	7
13	Unprecedented solar water splitting of dendritic nanostructured Bi2O3 films by combined oxygen vacancy formation and Na2MoO4 doping. International Journal of Hydrogen Energy, 2021, 46, 23702-23714.	7.1	11
14	Solution-Processed Ni-Based Nanocomposite Electrocatalysts: An Approach to Highly Efficient Electrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 5255-5264.	5.1	16
15	Multifunctional approach to improve water oxidation performance with MOF-based photoelectrodes. Applied Materials Today, 2021, 24, 101159.	4.3	4
16	Facile Surfactant-Assisted Synthesis of BiVO4 Nanoparticulate Films for Solar Water Splitting. Catalysts, 2021, 11, 1244.	3.5	1
17	Efficient and Stable Blue- and Red-Emitting Perovskite Nanocrystals through Defect Engineering: PbX ₂ Purification. Chemistry of Materials, 2021, 33, 8745-8757.	6.7	24
18	Intensity-Modulated Photocurrent Spectroscopy for Solar Energy Conversion Devices: What Does a Negative Value Mean?. ACS Energy Letters, 2020, 5, 187-191.	17.4	23

#	Article	IF	CITATIONS
19	Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States. ACS Applied Materials & Interfaces, 2020, 12, 914-924.	8.0	55
20	The role of oxygen vacancies in water splitting photoanodes. Sustainable Energy and Fuels, 2020, 4, 5916-5926.	4.9	52
21	A low temperature aqueous formate fuel cell using cobalt hexacyanoferrate as a non-noble metal oxidation catalyst. Sustainable Energy and Fuels, 2020, 4, 6227-6233.	4.9	8
22	Separating bulk and surface processes in NiO _x electrocatalysts for water oxidation. Sustainable Energy and Fuels, 2020, 4, 5024-5030.	4.9	26
23	Cobalt Hexacyanoferrate as a Selective and High Current Density Formate Oxidation Electrocatalyst. ACS Applied Energy Materials, 2020, 3, 9198-9207.	5.1	15
24	Hierarchical Ti-Based MOF with Embedded RuO ₂ Nanoparticles: a Highly Efficient Photoelectrode for Visible Light Water Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 18366-18376.	6.7	16
25	An integrated photoanode based on non-critical raw materials for robust solar water splitting. Materials Advances, 2020, 1, 1202-1211.	5.4	4
26	Electrophoretic deposition of antimonene for photoelectrochemical applications. Applied Materials Today, 2020, 20, 100714.	4.3	11
27	Lead Sulfide Nanocubes for Solar Energy Storage. Energy Technology, 2020, 8, 2000301.	3.8	5
28	Impact of Oxygen Vacancy Occupancy on Charge Carrier Dynamics in BiVO ₄ Photoanodes. Journal of the American Chemical Society, 2019, 141, 18791-18798.	13.7	147
29	TiO ₂ Nanotubes for Solar Water Splitting: Vacuum Annealing and Zr Doping Enhance Water Oxidation Kinetics. ACS Omega, 2019, 4, 16095-16102.	3.5	24
30	WO ₃ /BiVO ₄ : impact of charge separation at the timescale of water oxidation. Chemical Science, 2019, 10, 2643-2652.	7.4	59
31	Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2019, 10, 630-636.	4.6	124
32	The Role of Underlayers and Overlayers in Thin Film BiVO ₄ Photoanodes for Solar Water Splitting. Advanced Materials Interfaces, 2019, 6, 1900299.	3.7	28
33	Suppressing H ₂ Evolution and Promoting Selective CO ₂ Electroreduction to CO at Low Overpotentials by Alloying Au with Pd. ACS Catalysis, 2019, 9, 3527-3536.	11.2	79
34	Electronic Effects Determine the Selectivity of Planar Au–Cu Bimetallic Thin Films for Electrochemical CO ₂ Reduction. ACS Applied Materials & Interfaces, 2019, 11, 16546-16555.	8.0	71
35	A metal–organic framework converted catalyst that boosts photo-electrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 11143-11149.	10.3	59
36	Unraveling Charge Transfer in CoFe Prussian Blue Modified BiVO ₄ Photoanodes. ACS Energy Letters, 2019, 4, 337-342.	17.4	61

#	Article	IF	CITATIONS
37	Improving the Back Surface Field on an Amorphous Silicon Carbide Thinâ€Film Photocathode for Solar Water Splitting. ChemSusChem, 2018, 11, 1797-1804.	6.8	6
38	Impedance Spectroscopy in Molecular Devices. Green Chemistry and Sustainable Technology, 2018, , 353-384.	0.7	4
39	PHOTOELECTROCHEMICAL TOOLS FOR THE ASSESSMENT OF ENERGY CONVERSION DEVICES. , 2018, , 361-395		0
40	Enhancing the Optical Absorption and Interfacial Properties of BiVO ₄ with Ag ₃ PO ₄ Nanoparticles for Efficient Water Splitting. Journal of Physical Chemistry C, 2018, 122, 11608-11615.	3.1	44
41	Solar Energy Storage by a Heterostructured BiVO ₄ –PbO _{<i>x</i>} Photocapacitive Device. ACS Energy Letters, 2017, 2, 469-475.	17.4	38
42	Near-complete suppression of surface losses and total internal quantum efficiency in BiVO ₄ photoanodes. Energy and Environmental Science, 2017, 10, 1517-1529.	30.8	159
43	Level Alignment as Descriptor for Semiconductor/Catalyst Systems in Water Splitting: The Case of Hematite/Cobalt Hexacyanoferrate Photoanodes. ChemSusChem, 2017, 10, 4552-4560.	6.8	33
44	Cobalt Hexacyanoferrate on BiVO ₄ Photoanodes for Robust Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 37671-37681.	8.0	109
45	Chromium doped copper vanadate photoanodes for water splitting. Catalysis Today, 2017, 290, 65-72.	4.4	32
46	Understanding the synergistic effect of WO3–BiVO4 heterostructures by impedance spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 9255-9261.	2.8	41
47	Analysis of Photoelectrochemical Systems by Impedance Spectroscopy. , 2016, , 281-321.		9
48	Direct Hydrogen Evolution from Saline Water Reduction at Neutral pH using Organic Photocathodes. ChemSusChem, 2016, 9, 3062-3066.	6.8	16
49	Cooperative Catalytic Effect of ZrO ₂ and αâ€Fe ₂ O ₃ Nanoparticles on BiVO ₄ Photoanodes for Enhanced Photoelectrochemical Water Splitting. ChemSusChem, 2016, 9, 2779-2783.	6.8	42
50	Electropolymerized polyaniline: A promising hole selective contact in organic photoelectrochemical cells. Chemical Engineering Science, 2016, 154, 143-149.	3.8	26
51	Exploring Graphene Quantum Dots/TiO2 interface in photoelectrochemical reactions: Solar to fuel conversion. Electrochimica Acta, 2016, 187, 249-255.	5.2	79
52	The Complex Role of Carbon Nitride as a Sensitizer in Photoelectrochemical Cells. Advanced Optical Materials, 2015, 3, 1052-1058.	7.3	41
53	Toward Stable Solar Hydrogen Generation Using Organic Photoelectrochemical Cells. Journal of Physical Chemistry C, 2015, 119, 6488-6494.	3.1	61
54	Modulating the interaction between gold and TiO ₂ nanowires for enhanced solar driven photoelectrocatalytic hydrogen generation. Physical Chemistry Chemical Physics, 2015, 17, 19371-19378.	2.8	16

#	Article	IF	CITATIONS
55	Analysis of bio-anode performance through electrochemical impedance spectroscopy. Bioelectrochemistry, 2015, 106, 64-72.	4.6	45
56	Competitive Photoelectrochemical Methanol and Water Oxidation with Hematite Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 7653-7660.	8.0	56
57	Controlled Carbon Nitride Growth on Surfaces for Hydrogen Evolution Electrodes. Angewandte Chemie - International Edition, 2014, 53, 3654-3658.	13.8	187
58	Energy Diagram of Semiconductor/Electrolyte Junctions. Journal of Physical Chemistry Letters, 2014, 5, 205-207.	4.6	61
59	Panchromatic Solar-to-H ₂ Conversion by a Hybrid Quantum Dots–Dye Dual Absorber Tandem Device. Journal of Physical Chemistry C, 2014, 118, 891-895.	3.1	27
60	Calculation of the Energy Band Diagram of a Photoelectrochemical Water Splitting Cell. Journal of Physical Chemistry C, 2014, 118, 29599-29607.	3.1	56
61	Plasmonic versus catalytic effect of gold nanoparticles on mesoporous TiO2 electrodes for water splitting. Electrochimica Acta, 2014, 144, 64-70.	5.2	46
62	Photon Up-Conversion with Lanthanide-Doped Oxide Particles for Solar H ₂ Generation. Journal of Physical Chemistry C, 2014, 118, 11279-11284.	3.1	37
63	Understanding the Role of Underlayers and Overlayers in Thin Film Hematite Photoanodes. Advanced Functional Materials, 2014, 24, 7681-7688.	14.9	289
64	Organic photoelectrochemical cells with quantitative photocarrier conversion. Energy and Environmental Science, 2014, 7, 3666-3673.	30.8	55
65	Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics. Nature Communications, 2013, 4, 2272.	12.8	56
66	Hole conductivity and acceptor density of p-type CuGaO2 nanoparticles determined by impedance spectroscopy: The effect of Mg doping. Electrochimica Acta, 2013, 113, 570-574.	5.2	43
67	Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf― Journal of Physical Chemistry Letters, 2013, 4, 141-146.	4.6	101
68	High performance PbS Quantum Dot Sensitized Solar Cells exceeding 4% efficiency: the role of metal precursors in the electron injection and charge separation. Physical Chemistry Chemical Physics, 2013, 15, 13835.	2.8	143
69	Ultrafast characterization of the electron injection from CdSe quantum dots and dye N719 co-sensitizers into TiO2 using sulfide based ionic liquid for enhanced long term stability. Electrochimica Acta, 2013, 100, 35-43.	5.2	20
70	Interpretation of Cyclic Voltammetry Measurements of Thin Semiconductor Films for Solar Fuel Applications. Journal of Physical Chemistry Letters, 2013, 4, 1334-1339.	4.6	69
71	Water Oxidation at Hematite Photoelectrodes with an Iridium-Based Catalyst. Journal of Physical Chemistry C, 2013, 117, 3826-3833.	3.1	128
72	Quantum Dot Based Heterostructures for Unassisted Photoelectrochemical Hydrogen Generation. Advanced Energy Materials, 2013, 3, 176-182.	19.5	101

#	Article	IF	CITATIONS
73	Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy and Environmental Science, 2012, 5, 7626.	30.8	451
74	Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with "Co–Pi―Coated Hematite Electrodes. Journal of the American Chemical Society, 2012, 134, 16693-16700.	13.7	635
75	Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy. Journal of Electroanalytical Chemistry, 2012, 668, 119-125.	3.8	54
76	Water Oxidation at Hematite Photoelectrodes: The Role of Surface States. Journal of the American Chemical Society, 2012, 134, 4294-4302.	13.7	895
77	Easily manufactured TiO ₂ hollow fibers for quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 522-528.	2.8	42
78	Photoanodes Based on Nanostructured WO ₃ for Water Splitting. ChemPhysChem, 2012, 13, 3025-3034.	2.1	99
79	Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. Electrochimica Acta, 2012, 75, 139-147.	5.2	62
80	Identifying charge and mass transfer resistances of an oxygen reducing biocathode. Energy and Environmental Science, 2011, 4, 5035.	30.8	107
81	Fluorine Treatment of TiO2 for Enhancing Quantum Dot Sensitized Solar Cell Performance. Journal of Physical Chemistry C, 2011, 115, 14400-14407.	3.1	105
82	A Sulfide/Polysulfide-Based Ionic Liquid Electrolyte for Quantum Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 20156-20159.	13.7	153
83	Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires. Physical Chemistry Chemical Physics, 2011, 13, 7162.	2.8	45
84	Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO ₂ Electrodes. Journal of Physical Chemistry Letters, 2011, 2, 454-460.	4.6	247
85	Energy transfer versus charge separation in hybrid systems of semiconductor quantum dots and Ru-dyes as potential co-sensitizers of TiO2-based solar cells. Journal of Applied Physics, 2011, 110, .	2.5	42
86	Direct Correlation between Ultrafast Injection and Photoanode Performance in Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 22352-22360.	3.1	97
87	Influence of cysteine adsorption on the performance of CdSe quantum dots sensitized solar cells. Materials Chemistry and Physics, 2010, 124, 709-712.	4.0	22
88	Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: Correlation between cell performance and structural properties. Journal of Applied Physics, 2010, 108, 064310.	2.5	42
89	Design of Injection and Recombination in Quantum Dot Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 6834-6839.	13.7	252
90	Charge transfer kinetics in CdSe quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2010, 12, 2819.	2.8	44

#	Article	lF	CITATIONS
91	Fast Regeneration of CdSe Quantum Dots by Ru Dye in Sensitized TiO2 Electrodes. Journal of Physical Chemistry C, 2010, 114, 6755-6761.	3.1	43
92	Microstructural characterisation of vacuum sintered T42 powder metallurgy high-speed steel after heat treatments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 499, 360-367.	5.6	22
93	Recombination in Quantum Dot Sensitized Solar Cells. Accounts of Chemical Research, 2009, 42, 1848-1857.	15.6	747
94	Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology, 2009, 20, 20, 295204.	2.6	383
95	Effect of the heat treatment prior to extrusion on the direct hot-extrusion of aluminium powder compacts. Journal of Alloys and Compounds, 2009, 467, 191-201.	5.5	13
96	Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements. Journal of Physical Chemistry C, 2009, 113, 17278-17290.	3.1	694
97	Development of powder metallurgy T42 high speed steel for structural applications. Journal of Materials Processing Technology, 2008, 202, 521-527.	6.3	13
98	Sintering behaviour and microstructure development of T42 powder metallurgy high speed steel under different processing conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 480, 130-137.	5.6	47
99	Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotechnology, 2008, 19, 424007.	2.6	237
100	Resonant vibration analysis for temperature dependence of elastic properties of bulk metallic glass. Journal of Materials Research, 2007, 22, 533-537.	2.6	9
101	Recent Advances in Material Characterization Using the Impulse Excitation Technique (IET). Key Engineering Materials, 2007, 333, 235-238.	0.4	8
102	The role of chemical wear in machining iron based materials by PCD and PCBN super-hard tool materials. Diamond and Related Materials, 2007, 16, 435-445.	3.9	42
103	Chemical reactivity of PVD-coated WC–Co tools with steel. Applied Surface Science, 2007, 253, 3547-3556.	6.1	15
104	Effects of microstructural heterogeneity on the mechanical properties of pressed soft magnetic composite bodies. Journal of Alloys and Compounds, 2006, 419, 299-305.	5.5	24
105	Influence of the green density on the dewaxing behaviour of uniaxially pressed powder compacts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 430, 277-284.	5.6	9
106	Computer aided design of PM high speed steels for vacuum and nitrogen atmospheres. Powder Metallurgy, 2003, 46, 209-218.	1.7	14
107	Sintering of modified M35MHV HSS under diferent nitrogen pressures. Powder Metallurgy, 2001, 44, 211-220.	1.7	3
108	Effect of nitrogen on supersolidus sintering of modified M35M high speed steel. Powder Metallurgy, 1999, 42, 353-357.	1.7	26

7