Sabine Dittrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4560608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. The Cochrane Library, 2022, 2022, CD013705.	2.8	482
2	Evaluations of training and education interventions for improved infectious disease management in low-income and middle-income countries: a systematic literature review. BMJ Open, 2022, 12, e053832.	1.9	0
3	Facilitating Safe Discharge Through Predicting Disease Progression in Moderate Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study to Develop and Validate a Clinical Prediction Model in Resource-Limited Settings. Clinical Infectious Diseases, 2022, 75, e368-e379.	5.8	4
4	Two-test algorithms for infectious disease diagnosis: Implications for COVID-19. PLOS Global Public Health, 2022, 2, e0000293.	1.6	4
5	Zoonotic Pathogens in Wildlife Traded in Markets for Human Consumption, Laos. Emerging Infectious Diseases, 2022, 28, 860-864.	4.3	6
6	Clinical management and outcomes of acute febrile illness in children attending a tertiary hospital in southern Ethiopia. BMC Infectious Diseases, 2022, 22, 434.	2.9	3
7	Distinguishing bacterial versus non-bacterial causes of febrile illness – A systematic review of host biomarkers. Journal of Infection, 2021, 82, 1-10.	3.3	28
8	Anticipating the future: prognostic tools as a complementary strategy to improve care for patients with febrile illnesses in resource-limited settings. BMJ Global Health, 2021, 6, e006057.	4.7	14
9	Algorithm in the Diagnosis of Febrile Illness Using Pathogen-specific Rapid Diagnostic Tests. Clinical Infectious Diseases, 2020, 70, 2262-2269.	5.8	11
10	Serodiagnostics for Severe Acute Respiratory Syndrome–Related Coronavirus 2. Annals of Internal Medicine, 2020, 173, 450-460.	3.9	124
11	Diagnostic Testing for Severe Acute Respiratory Syndrome–Related Coronavirus 2. Annals of Internal Medicine, 2020, 172, 726-734.	3.9	517
12	Bacterial versus non-bacterial infections: a methodology to support use-case-driven product development of diagnostics. BMJ Global Health, 2020, 5, e003141.	4.7	7
13	Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. The Cochrane Library, 2020, 8, CD013705.	2.8	770
14	The good and the bad: using C reactive protein to distinguish bacterial from non-bacterial infection among febrile patients in low-resource settings. BMJ Clobal Health, 2020, 5, e002396.	4.7	43
15	Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. International Journal of Infectious Diseases, 2020, 99, 328-333.	3.3	297
16	Diagnosing malaria and other febrile illnesses during the COVID-19 pandemic. The Lancet Global Health, 2020, 8, e879-e880.	6.3	13
17	Orientia tsutsugamushi. Trends in Microbiology, 2020, 28, 780-781.	7.7	13
18	Electronic clinical decision support algorithms incorporating point-of-care diagnostic tests in low-resource settings: a target product profile. BMJ Global Health, 2020, 5, e002067.	4.7	26

SABINE DITTRICH

#	Article	IF	CITATIONS
19	Prioritising pathogens for the management of severe febrile patients to improve clinical care in low- and middle-income countries. BMC Infectious Diseases, 2020, 20, 117.	2.9	4
20	Target Product Profile for a mobile app to read rapid diagnostic tests to strengthen infectious disease surveillance. PLoS ONE, 2020, 15, e0228311.	2.5	15
21	Application of a simple point-of-care test to reduce UK healthcare costs and adverse events in outpatient acute respiratory infections. Journal of Medical Economics, 2020, 23, 673-682.	2.1	9
22	Causes of fever in primary care in Southeast Asia and the performance of C-reactive protein in discriminating bacterial from viral pathogens. International Journal of Infectious Diseases, 2020, 96, 334-342.	3.3	8
23	Cost-Effectiveness Analysis of Sex-Stratified Plasmodium vivax Treatment Strategies Using Available G6PD Diagnostics to Accelerate Access to Radical Cure. American Journal of Tropical Medicine and Hygiene, 2020, 103, 394-403.	1.4	11
24	Implementation of C-reactive protein point of care testing to improve antibiotic targeting in respiratory illness in Vietnamese primary care (ICAT): a study protocol for a cluster randomised controlled trial. BMJ Open, 2020, 10, e040977.	1.9	4
25	A Prospective, Open-label, Randomized Trial of Doxycycline Versus Azithromycin for the Treatment of Uncomplicated Murine Typhus. Clinical Infectious Diseases, 2019, 68, 738-747.	5.8	34
26	Quantifying the incidence of severe-febrile-illness hospital admissions in sub-Saharan Africa. PLoS ONE, 2019, 14, e0220371.	2.5	11
27	Redefining typhoid diagnosis: what would an improved test need to look like?. BMJ Clobal Health, 2019, 4, e001831.	4.7	14
28	Molecular characterization and mapping of glucose-6-phosphate dehydrogenase (G6PD) mutations in the Greater Mekong Subregion. Malaria Journal, 2019, 18, 20.	2.3	36
29	Defining System Requirements for Simplified Blood Culture to Enable Widespread Use in Resource-Limited Settings. Diagnostics, 2019, 9, 10.	2.6	29
30	Management of Central Nervous System Infections, Vientiane, Laos, 2003–2011. Emerging Infectious Diseases, 2019, 25, 898-910.	4.3	29
31	Effect of point-of-care C-reactive protein testing on antibiotic prescription in febrile patients attending primary care in Thailand and Myanmar: an open-label, randomised, controlled trial. The Lancet Global Health, 2019, 7, e119-e131.	6.3	61
32	A Prospective Hospital Study to Evaluate the Diagnostic Accuracy of Rapid Diagnostic Tests for the Early Detection of Leptospirosis in Laos. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1056-1060.	1.4	11
33	Novel high-throughput screening method using quantitative PCR to determine the antimicrobial susceptibility of Orientia tsutsugamushi clinical isolates. Journal of Antimicrobial Chemotherapy, 2018, 74, 74-81.	3.0	9
34	Comparative pan-genomic analyses of Orientia tsutsugamushi reveal an exceptional model of bacterial evolution driving genomic diversity. Microbial Genomics, 2018, 4, .	2.0	11
35	Evaluation of consensus method for the culture of Burkholderia pseudomallei in soil samples from Laos. Wellcome Open Research, 2018, 3, 132.	1.8	10
36	New Biomarkers and Diagnostic Tools for the Management of Fever in Low- and Middle-Income Countries: An Overview of the Challenges. Diagnostics, 2017, 7, 44.	2.6	23

SABINE DITTRICH

#	Article	IF	CITATIONS
37	Antimicrobial resistance in Africa: a systematic review. BMC Infectious Diseases, 2017, 17, 616.	2.9	310
38	Survival and Growth ofOrientia tsutsugamushiin Conventional Hemocultures. Emerging Infectious Diseases, 2016, 22, 1460-1463.	4.3	10
39	Large-Scale Survey for Tickborne Bacteria, Khammouan Province, Laos. Emerging Infectious Diseases, 2016, 22, 1635-1639.	4.3	35
40	Target Product Profile for a Diagnostic Assay to Differentiate between Bacterial and Non-Bacterial Infections and Reduce Antimicrobial Overuse in Resource-Limited Settings: An Expert Consensus. PLoS ONE, 2016, 11, e0161721.	2.5	79
41	An Extended Multilocus Sequence Typing (MLST) Scheme for Rapid Direct Typing of Leptospira from Clinical Samples. PLoS Neglected Tropical Diseases, 2016, 10, e0004996.	3.0	32
42	Utility of a Lateral Flow Immunoassay (LFI) to Detect Burkholderia pseudomallei in Soil Samples. PLoS Neglected Tropical Diseases, 2016, 10, e0005204.	3.0	7
43	Investigation of Recurrent Melioidosis in Lao People's Democratic Republic by Multilocus Sequence Typing. American Journal of Tropical Medicine and Hygiene, 2016, 94, 1208-1211.	1.4	10
44	Land use and soil type determine the presence of the pathogen Burkholderia pseudomallei in tropical rivers. Environmental Science and Pollution Research, 2016, 23, 7828-7839.	5.3	33
45	The Utility of Blood Culture Fluid for the Molecular Diagnosis of Leptospira: A Prospective Evaluation. American Journal of Tropical Medicine and Hygiene, 2016, 94, 736-740.	1.4	10
46	Endemic Scrub Typhus in South America. New England Journal of Medicine, 2016, 375, 954-961.	27.0	196
47	Host Biomarkers for Distinguishing Bacterial from Non-Bacterial Causes of Acute Febrile Illness: A Comprehensive Review. PLoS ONE, 2016, 11, e0160278.	2.5	133
48	Causes of Fever in Rural Southern Laos. American Journal of Tropical Medicine and Hygiene, 2015, 93, 517-520.	1.4	34
49	Orientia, rickettsia, and leptospira pathogens as causes of CNS infections in Laos: a prospective study. The Lancet Global Health, 2015, 3, e104-e112.	6.3	98
50	A Novel Technique for Detecting Antibiotic-Resistant Typhoid from Rapid Diagnostic Tests. Journal of Clinical Microbiology, 2015, 53, 1758-1760.	3.9	7
51	Case Report: Actinomycetoma Caused by Nocardia aobensis from Lao PDR with Favourable Outcome after Short-Term Antibiotic Treatment. PLoS Neglected Tropical Diseases, 2015, 9, e0003729.	3.0	7
52	Evaluation of Molecular Methods To Improve the Detection of Burkholderia pseudomallei in Soil and Water Samples from Laos. Applied and Environmental Microbiology, 2015, 81, 3722-3727.	3.1	28
53	Blood–Brain Barrier Function and Biomarkers of Central Nervous System Injury in Rickettsial Versus Other Neurological Infections in Laos. American Journal of Tropical Medicine and Hygiene, 2015, 93, 232-237.	1.4	20
54	Leeches as further potential vectors for rickettsial infections. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6593-4.	7.1	16

SABINE DITTRICH

#	Article	IF	CITATIONS
55	Neorickettsia sennetsu as a Neglected Cause of Fever in South-East Asia. PLoS Neglected Tropical Diseases, 2015, 9, e0003908.	3.0	20
56	Rickettsia felisInfections and Comorbid Conditions, Laos, 2003–2011. Emerging Infectious Diseases, 2014, 20, 1402-1404.	4.3	21
57	Speed versus coverage trade off in targeted interventions during an outbreak. Epidemics, 2014, 8, 28-40.	3.0	12
58	Loop-Mediated Isothermal Amplification for Rickettsia typhi (the Causal Agent of Murine Typhus): Problems with Diagnosis at the Limit of Detection. Journal of Clinical Microbiology, 2014, 52, 832-838.	3.9	36
59	Evaluation of Eight Serological Tests for Diagnosis of Imported Schistosomiasis. Vaccine Journal, 2012, 19, 948-953.	3.1	85
60	Response to Imported Case of Marburg Hemorrhagic Fever, the Netherlands. Emerging Infectious Diseases, 2009, 15, 1171-1175.	4.3	165
61	An atypical orthologue of 6â€pyruvoyltetrahydropterin synthase can provide the missing link in the folate biosynthesis pathway of malaria parasites. Molecular Microbiology, 2008, 67, 609-618.	2.5	38
62	Plasmodium falciparum: a paradigm for alternative folate biosynthesis in diverse microorganisms?. Trends in Parasitology, 2008, 24, 502-508.	3.3	21
63	Genotypes and in vivo resistance of Plasmodium falciparum isolates in an endemic region of Iran. Parasitology Research, 2006, 100, 589-592.	1.6	16
64	Falciparum malaria in the north of Laos: the occurrence and implications of the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene haplotype SVMNT. Tropical Medicine and International Health, 2005, 10, 1267-1270.	2.3	23
65	Therapeutic efficacy of artemether-lumefantrine and artesunate-mefloquine for treatment of uncomplicated Plasmodium falciparum malaria in Luang Namtha Province, Lao People's Democratic Republic Tropical Medicine and International Health 2004 9, 1175-1183	2.3	55