Licheng Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4560158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dye-Sensitized Solar Cells. Chemical Reviews, 2010, 110, 6595-6663.	47.7	8,072
2	A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nature Chemistry, 2012, 4, 418-423.	13.6	1,131
3	Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 16714-16724.	13.7	1,000
4	Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature Communications, 2016, 7, 11981.	12.8	808
5	A novel organic chromophore for dye-sensitized nanostructured solar cells. Chemical Communications, 2006, , 2245.	4.1	651
6	Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chemical Society Reviews, 2019, 48, 2216-2264.	38.1	629
7	Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications. Journal of the American Chemical Society, 2008, 130, 6259-6266.	13.7	625
8	Tuning the HOMO and LUMO Energy Levels of Organic Chromophores for Dye Sensitized Solar Cells. Journal of Organic Chemistry, 2007, 72, 9550-9556.	3.2	576
9	Towards artificial photosynthesis: ruthenium–manganese chemistry for energy production. Chemical Society Reviews, 2001, 30, 36-49.	38.1	530
10	Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy and Environmental Science, 2012, 5, 6763.	30.8	474
11	Isolated Seven-Coordinate Ru(IV) Dimer Complex with [HOHOH] ^{â^'} Bridging Ligand as an Intermediate for Catalytic Water Oxidation. Journal of the American Chemical Society, 2009, 131, 10397-10399.	13.7	461
12	Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chemical Communications, 2007, , 3741.	4.1	446
13	Effect of Different Dye Baths and Dye-Structures on the Performance of Dye-Sensitized Solar Cells Based on Triphenylamine Dyes. Journal of Physical Chemistry C, 2008, 112, 11023-11033.	3.1	432
14	Recent Progress on Holeâ€Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500213.	19.5	418
15	Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nature Communications, 2021, 12, 4587.	12.8	401
16	Modified Phthalocyanines for Efficient Near-IR Sensitization of Nanostructured TiO2 Electrode. Journal of the American Chemical Society, 2002, 124, 4922-4932.	13.7	396
17	Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nature Communications, 2020, 11, 5462.	12.8	383
18	Design of an Organic Chromophore for P-Type Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2008, 130, 8570-8571.	13.7	371

#	Article	IF	CITATIONS
19	Carbazoleâ€Based Holeâ€Transport Materials for Efficient Solidâ€&tate Dyeâ€Sensitized Solar Cells and Perovskite Solar Cells. Advanced Materials, 2014, 26, 6629-6634.	21.0	369
20	Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation. ACS Nano, 2018, 12, 12369-12379.	14.6	366
21	Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy and Environmental Science, 2015, 8, 760-775.	30.8	363
22	A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells. Energy and Environmental Science, 2016, 9, 873-877.	30.8	362
23	How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit Voltage and Electron Lifetimes. Langmuir, 2010, 26, 2592-2598.	3.5	359
24	Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chemical Society Reviews, 2021, 50, 2663-2695.	38.1	333
25	Visible Light Driven Water Splitting in a Molecular Device with Unprecedentedly High Photocurrent Density. Journal of the American Chemical Society, 2013, 135, 4219-4222.	13.7	330
26	Organic Dye-Sensitized Tandem Photoelectrochemical Cell for Light Driven Total Water Splitting. Journal of the American Chemical Society, 2015, 137, 9153-9159.	13.7	327
27	Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. Nature Communications, 2018, 9, 381.	12.8	322
28	Double‣ayered NiO Photocathodes for pâ€Type DSSCs with Record IPCE. Advanced Materials, 2010, 22, 1759-1762.	21.0	303
29	Effect of Tetrahydroquinoline Dyes Structure on the Performance of Organic Dye-Sensitized Solar Cells. Chemistry of Materials, 2007, 19, 4007-4015.	6.7	302
30	Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting. Advanced Functional Materials, 2019, 29, 1808367.	14.9	298
31	Vertically Aligned Oxygenated-CoS ₂ –MoS ₂ Heteronanosheet Architecture from Polyoxometalate for Efficient and Stable Overall Water Splitting. ACS Catalysis, 2018, 8, 4612-4621.	11.2	290
32	13.6% Efficient Organic Dye-Sensitized Solar Cells by Minimizing Energy Losses of the Excited State. ACS Energy Letters, 2019, 4, 943-951.	17.4	284
33	Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production. Coordination Chemistry Reviews, 2005, 249, 1653-1663.	18.8	267
34	Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels. International Journal of Multiphase Flow, 2009, 35, 47-54.	3.4	265
35	Proton-Coupled Electron Transfer from Tyrosine in a Tyrosineâ^'Rutheniumâ^'tris-Bipyridine Complex:Â Comparison with TyrosineZOxidation in Photosystem II. Journal of the American Chemical Society, 2000, 122, 3932-3936.	13.7	262
36	Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte. Journal of the American Chemical Society, 2011, 133, 8458-8460.	13.7	257

#	Article	lF	CITATIONS
37	Highly Efficient Bioinspired Molecular Ru Water Oxidation Catalysts with Negatively Charged Backbone Ligands. Accounts of Chemical Research, 2015, 48, 2084-2096.	15.6	255
38	Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy, 2016, 23, 138-144.	16.0	253
39	Structure Engineering of Hole–Conductor Free Perovskite-Based Solar Cells with Low-Temperature-Processed Commercial Carbon Paste As Cathode. ACS Applied Materials & Interfaces, 2014, 6, 16140-16146.	8.0	245
40	Visible Light-Driven Water Oxidation by a Molecular Ruthenium Catalyst in Homogeneous System. Inorganic Chemistry, 2010, 49, 209-215.	4.0	244
41	Light-driven hydrogen production catalysed by transition metal complexes in homogeneous systems. Dalton Transactions, 2009, , 6458.	3.3	241
42	Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy, 2016, 20, 108-116.	16.0	240
43	Nucleophilic Attack of Hydroxide on a Mn ^V Oxo Complex: A Model of the Oâ^'O Bond Formation in the Oxygen Evolving Complex of Photosystem II. Journal of the American Chemical Society, 2009, 131, 8726-8727.	13.7	238
44	Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO. Chemical Communications, 2012, 48, 988-990.	4.1	237
45	Metal–organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO ₂ : the role of the morphology effect. Journal of Materials Chemistry A, 2018, 6, 4768-4775.	10.3	236
46	A Biomimetic Pathway for Hydrogen Evolution from a Model of the Iron Hydrogenase Active Site. Angewandte Chemie - International Edition, 2004, 43, 1006-1009.	13.8	232
47	A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. Chemical Communications, 2010, 46, 7307.	4.1	232
48	Organic Redox Couples and Organic Counter Electrode for Efficient Organic Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 9413-9422.	13.7	227
49	Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO ₂ Reduction. Chemistry - A European Journal, 2017, 23, 9481-9485.	3.3	225
50	Promoting Active Sites in Core–Shell Nanowire Array as Mott–Schottky Electrocatalysts for Efficient and Stable Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1704447.	14.9	225
51	Switching the Redox Mechanism:Â Models for Proton-Coupled Electron Transfer from Tyrosine and Tryptophan. Journal of the American Chemical Society, 2005, 127, 3855-3863.	13.7	224
52	A Lightâ€Resistant Organic Sensitizer for Solarâ€Cell Applications. Angewandte Chemie - International Edition, 2009, 48, 1576-1580.	13.8	223
53	Tailor-Making Low-Cost Spiro[fluorene-9,9′-xanthene]-Based 3D Oligomers for Perovskite Solar Cells. CheM, 2017, 2, 676-687.	11.7	222
54	Molecular Design of Anthracene-Bridged Metal-Free Organic Dyes for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 9101-9110.	3.1	216

#	Article	IF	CITATIONS
55	Hollow Iron–Vanadium Composite Spheres: A Highly Efficient Ironâ€Based Water Oxidation Electrocatalyst without the Need for Nickel or Cobalt. Angewandte Chemie - International Edition, 2017, 56, 3289-3293.	13.8	216
56	Visible light-driven water oxidation—from molecular catalysts to photoelectrochemical cells. Energy and Environmental Science, 2011, 4, 3296.	30.8	209
57	Simultaneously efficient light absorption and charge transport of phosphate and oxygen-vacancy confined in bismuth tungstate atomic layers triggering robust solar CO2 reduction. Nano Energy, 2017, 32, 359-366.	16.0	208
58	Photoinduced Intramolecular Charge Transfer and S ₂ Fluorescence in Thiopheneâ€i€â€Conjugated Donor–Acceptor Systems: Experimental and TDDFT Studies. Chemistry - A European Journal, 2008, 14, 6935-6947.	3.3	203
59	Visible Light-Driven Electron Transfer and Hydrogen Generation Catalyzed by Bioinspired [2Fe2S] Complexes. Inorganic Chemistry, 2008, 47, 2805-2810.	4.0	203
60	A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nature Communications, 2019, 10, 5074.	12.8	203
61	Highly efficient and robust molecular ruthenium catalysts for water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15584-15588.	7.1	202
62	Chemical and Lightâ€Driven Oxidation of Water Catalyzed by an Efficient Dinuclear Ruthenium Complex. Angewandte Chemie - International Edition, 2010, 49, 8934-8937.	13.8	199
63	Highly Efficient Oxidation of Water by a Molecular Catalyst Immobilized on Carbon Nanotubes. Angewandte Chemie - International Edition, 2011, 50, 12276-12279.	13.8	193
64	XPS and UPS Characterization of the TiO2/ZnPcGly Heterointerface:Â Alignment of Energy Levels. Journal of Physical Chemistry B, 2002, 106, 5814-5819.	2.6	191
65	Synthesis and Structure of a Biomimetic Model of the Iron Hydrogenase Active Site Covalently Linked to a Ruthenium Photosensitizer. Angewandte Chemie - International Edition, 2003, 42, 3285-3288.	13.8	191
66	Paired Electrocatalytic Oxygenation and Hydrogenation of Organic Substrates with Water as the Oxygen and Hydrogen Source. Angewandte Chemie - International Edition, 2019, 58, 9155-9159.	13.8	188
67	An evaluation of prediction methods for saturated flow boiling heat transfer in mini-channels. International Journal of Heat and Mass Transfer, 2009, 52, 5323-5329.	4.8	187
68	Efficient Electrocatalytic Water Oxidation by a Copper Oxide Thin Film in Borate Buffer. ACS Catalysis, 2015, 5, 627-630.	11.2	186
69	Effect of Anchoring Group on Electron Injection and Recombination Dynamics in Organic Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 3881-3886.	3.1	185
70	Rhodaninedyes for dye-sensitized solar cells :  spectroscopy, energy levels and photovoltaic performance. Physical Chemistry Chemical Physics, 2009, 11, 133-141.	2.8	178
71	Highly Efficient Solidâ€State Dyeâ€Sensitized Solar Cells Based on Triphenylamine Dyes. Advanced Functional Materials, 2011, 21, 2944-2952.	14.9	178
72	Symmetric and unsymmetric donor functionalization. comparing structural and spectral benefits of chromophores for dye-sensitized solar cells. Journal of Materials Chemistry, 2009, 19, 7232.	6.7	177

#	Article	IF	CITATIONS
73	Structural Modifications of Mononuclear Ruthenium Complexes:†A Combined Experimental and Theoretical Study on the Kinetics of Rutheniumâ€Catalyzed Water Oxidation. Angewandte Chemie - International Edition, 2011, 50, 445-449.	13.8	177

Influence of Tertiary Phosphanes on the Coordination Configurations and Electrochemical Properties of Iron Hydrogenase Model Complexes: Crystal Structures of [(μ-S2C3H6)Fe2(CO)6-nLn] (L =) Tj ETQq**Ø.0** O rgBT1‡@verlock 74

75	Binuclear Ironâ "Sulfur Complexes with Bidentate Phosphine Ligands as Active Site Models of Fe-Hydrogenase and Their Catalytic Proton Reduction. Inorganic Chemistry, 2007, 46, 1981-1991.	4.0	176
76	Synthesis and Mechanistic Studies of Organic Chromophores with Different Energy Levels for p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 4738-4748.	3.1	174
77	High Incident Photonâ€toâ€Current Conversion Efficiency of pâ€Type Dyeâ€Sensitized Solar Cells Based on NiO and Organic Chromophores. Advanced Materials, 2009, 21, 2993-2996.	21.0	173
78	Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 295-300.	3.9	170
79	Two Novel Carbazole Dyes for Dye-Sensitized Solar Cells with Open-Circuit Voltages up to 1 V Based on Br ^{â°'} /Br ₃ ^{â°'} Electrolytes. Organic Letters, 2009, 11, 5542-5545.	4.6	166
80	A Molecular Copper Catalyst for Electrochemical Water Reduction with a Large Hydrogenâ€Generation Rate Constant in Aqueous Solution. Angewandte Chemie - International Edition, 2014, 53, 13803-13807.	13.8	166
81	Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO ₂ to CO exhibiting high faradaic efficiency. Journal of Materials Chemistry A, 2016, 4, 15320-15326.	10.3	166
82	Solar cells sensitized with type-II ZnSe–CdS core/shell colloidal quantum dots. Chemical Communications, 2011, 47, 1536-1538.	4.1	161
83	Influence of π-Conjugation Units in Organic Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 1853-1860.	3.1	160
84	Photochemical H2 production with noble-metal-free molecular devices comprising a porphyrin photosensitizer and a cobaloxime catalyst. Chemical Communications, 2010, 46, 8806.	4.1	160
85	Tuning of phenoxazine chromophores for efficient organic dye-sensitized solar cells. Chemical Communications, 2009, , 6288.	4.1	156
86	Evolution of O ₂ in a Seven oordinate Ru ^{IV} Dimer Complex with a [HOHOH] ^{â^'} Bridge: A Computational Study. Angewandte Chemie - International Edition, 2010, 49, 1773-1777.	13.8	155
87	Chemical and Photochemical Water Oxidation Catalyzed by Mononuclear Ruthenium Complexes with a Negatively Charged Tridentate Ligand. Chemistry - A European Journal, 2010, 16, 4659-4668.	3.3	154
88	A metal-free "black dye―for panchromatic dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 674.	30.8	153
89	Photocatalytic Hydrogen Production from Water by Noble-Metal-Free Molecular Catalyst Systems Containing Rose Bengal and the Cobaloximes of BF _{<i>x</i>} -Bridged Oxime Ligands. Journal of Physical Chemistry C, 2010, 114, 15868-15874.	3.1	151
90	Fabrication and Kinetic Study of a Ferrihydrite-Modified BiVO ₄ Photoanode. ACS Catalysis, 2017, 7, 1868-1874.	11.2	151

#	Article	IF	CITATIONS
91	Noncovalent Assembly of a Metalloporphyrin and an Iron Hydrogenase Active-Site Model: Photo-Induced Electron Transfer and Hydrogen Generation. Journal of Physical Chemistry B, 2008, 112, 8198-8202.	2.6	150
92	High-efficiency dye-sensitized solar cells with molecular copper phenanthroline as solid hole conductor. Energy and Environmental Science, 2015, 8, 2634-2637.	30.8	149
93	Top-Down Approach Making Anisotropic Cellulose Aerogels as Universal Substrates for Multifunctionalization. ACS Nano, 2020, 14, 7111-7120.	14.6	147
94	lodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 9180.	30.8	146
95	Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes. Chemical Communications, 2014, 50, 12947-12950.	4.1	144
96	A New Dinuclear Ruthenium Complex as an Efficient Water Oxidation Catalyst. Inorganic Chemistry, 2009, 48, 2717-2719.	4.0	143
97	Homogeneous photocatalytic production of hydrogen from water by a bioinspired [Fe ₂ S ₂] catalyst with high turnover numbers. Dalton Transactions, 2010, 39, 1204-1206.	3.3	143
98	Electroless plated Ni–B films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy, 2016, 19, 98-107.	16.0	143
99	Inorganic Holeâ€Transporting Materials for Perovskite Solar Cells. Small Methods, 2018, 2, 1700280.	8.6	141
100	Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production. Coordination Chemistry Reviews, 2015, 287, 1-14.	18.8	140
101	Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal–organic framework nanosheets. Applied Catalysis B: Environmental, 2018, 227, 54-60.	20.2	140
102	Initial Light Soaking Treatment Enables Hole Transport Material to Outperform Spiro-OMeTAD in Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2013, 135, 7378-7385.	13.7	138
103	Molecular Engineering of Copper Phthalocyanines: A Strategy in Developing Dopantâ€Free Holeâ€Transporting Materials for Efficient and Ambientâ€Stable Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803287.	19.5	138
104	lodine-free redox couples for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 10592.	6.7	137
105	Model of the Iron Hydrogenase Active Site Covalently Linked to a Ruthenium Photosensitizer:Â Synthesis and Photophysical Properties. Inorganic Chemistry, 2004, 43, 4683-4692.	4.0	136
106	Insights into Ru-Based Molecular Water Oxidation Catalysts: Electronic and Noncovalent-Interaction Effects on Their Catalytic Activities. Inorganic Chemistry, 2013, 52, 7844-7852.	4.0	136
107	Mimicking Electron Transfer Reactions in Photosystem II:  Synthesis and Photochemical Characterization of a Ruthenium(II) Tris(bipyridyl) Complex with a Covalently Linked Tyrosine. Journal of the American Chemical Society, 1997, 119, 10720-10725.	13.7	135
108	Pt-free tandem molecular photoelectrochemical cells for water splitting driven by visible light. Physical Chemistry Chemical Physics, 2014, 16, 25234-25240.	2.8	135

#	Article	IF	CITATIONS
109	A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion. Physical Chemistry Chemical Physics, 2016, 18, 10727-10738.	2.8	135
110	Influence of Triple Bonds as π-Spacer Units in Metal-Free Organic Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 11305-11313.	3.1	134
111	The Importance of Pendant Groups on Triphenylamineâ€Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency. Advanced Energy Materials, 2018, 8, 1701209.	19.5	134
112	Effect of different electron donating groups on the performance of dye-sensitized solar cells. Dyes and Pigments, 2010, 84, 62-68.	3.7	132
113	Ru-bda: Unique Molecular Water-Oxidation Catalysts with Distortion Induced Open Site and Negatively Charged Ligands. Journal of the American Chemical Society, 2019, 141, 5565-5580.	13.7	132
114	A Triphenylamine Dye Model for the Study of Intramolecular Energy Transfer and Charge Transfer in Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2008, 18, 3461-3468.	14.9	131
115	Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co ₄ O ₄ Cubane Catalyst. Angewandte Chemie - International Edition, 2017, 56, 6911-6915.	13.8	130
116	Strategy to Boost the Efficiency of Mixed-Ion Perovskite Solar Cells: Changing Geometry of the Hole Transporting Material. ACS Nano, 2016, 10, 6816-6825.	14.6	127
117	Simple Nickelâ€Based Catalyst Systems Combined With Graphitic Carbon Nitride for Stable Photocatalytic Hydrogen Production in Water. ChemSusChem, 2012, 5, 2133-2138.	6.8	126
118	Towards A Solar Fuel Device: Lightâ€Driven Water Oxidation Catalyzed by a Supramolecular Assembly. Angewandte Chemie - International Edition, 2012, 51, 2417-2420.	13.8	126
119	Phthalocyanine-Sensitized Nanostructured TiO2Electrodes Prepared by a Novel Anchoring Method. Langmuir, 2001, 17, 2743-2747.	3.5	124
120	Binuclear Rutheniumâ^'Manganese Complexes as Simple Artificial Models for Photosystem II in Green Plants. Journal of the American Chemical Society, 1997, 119, 6996-7004.	13.7	123
121	A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mV overpotential. Energy and Environmental Science, 2014, 7, 329-334.	30.8	121
122	A nickel (II) PY5 complex as an electrocatalyst for water oxidation. Journal of Catalysis, 2016, 335, 72-78.	6.2	121
123	Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting. Nano Energy, 2019, 59, 537-544.	16.0	121
124	Structural Modification of Organic Dyes for Efficient Coadsorbent-Free Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 2799-2805.	3.1	120
125	Polymeric, Cost-Effective, Dopant-Free Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 19700-19707.	13.7	119
126	Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 779-789.	2.8	118

#	Article	IF	CITATIONS
127	Photochemical hydrogen production catalyzed by polypyridyl ruthenium–cobaloxime heterobinuclear complexes with different bridges. Journal of Organometallic Chemistry, 2009, 694, 2814-2819.	1.8	116
128	Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst. Chemical Communications, 2009, , 4536.	4.1	116
129	Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics. Dalton Transactions, 2011, 40, 12793.	3.3	116
130	Visible light-driven water oxidation catalyzed by a highly efficient dinuclear ruthenium complex. Chemical Communications, 2010, 46, 6506.	4.1	115
131	Visible Light-Driven Water Splitting in Photoelectrochemical Cells with Supramolecular Catalysts on Photoanodes. ACS Catalysis, 2014, 4, 2347-2350.	11.2	115
132	Photocatalytic H2 production in aqueous solution with host-guest inclusions formed by insertion of an FeFe-hydrogenase mimic and an organic dye into cyclodextrins. Energy and Environmental Science, 2012, 5, 8220.	30.8	114
133	AgTFSI as pâ€Type Dopant for Efficient and Stable Solidâ€State Dyeâ€Sensitized and Perovskite Solar Cells. ChemSusChem, 2014, 7, 3252-3256.	6.8	114
134	Engineering Single-Atomic Ni-N ₄ -O Sites on Semiconductor Photoanodes for High-Performance Photoelectrochemical Water Splitting. Journal of the American Chemical Society, 2021, 143, 20657-20669.	13.7	114
135	Electron Donorâ^'Acceptor Dyads Based on Ruthenium(II) Bipyridine and Terpyridine Complexes Bound to Naphthalenediimide. Inorganic Chemistry, 2003, 42, 2908-2918.	4.0	112
136	Efficient near infrared D–π–A sensitizers with lateral anchoring group for dye-sensitized solar cells. Chemical Communications, 2009, , 4031.	4.1	112
137	Tuning the HOMO Energy Levels of Organic Dyes for Dye‧ensitized Solar Cells Based on Br ^{â^'} /Br ₃ ^{â^'} Electrolytes. Chemistry - A European Journal, 2010, 16, 13127-13138.	3.3	112
138	Efficient Organicâ€Dyeâ€Sensitized Solar Cells Based on an Iodineâ€Free Electrolyte. Angewandte Chemie - International Edition, 2010, 49, 7328-7331.	13.8	112
139	Promoting the Activity of Catalysts for the Oxidation of Water with Bridged Dinuclear Ruthenium Complexes. Angewandte Chemie - International Edition, 2013, 52, 3398-3401.	13.8	110
140	Phenoxazineâ€Based Small Molecule Material for Efficient Perovskite Solar Cells and Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1401720.	19.5	109
141	Efficient BiVO ₄ Photoanodes by Postsynthetic Treatment: Remarkable Improvements in Photoelectrochemical Performance from Facile Borate Modification. Angewandte Chemie - International Edition, 2019, 58, 19027-19033.	13.8	108
142	Boosting nitrogen reduction reaction by bio-inspired FeMoS containing hybrid electrocatalyst over a wide pH range. Nano Energy, 2019, 62, 282-288.	16.0	108
143	Intermolecular Electron Transfer from Photogenerated Ru(bpy)3+to [2Fe2S] Model Complexes of the Iron-Only Hydrogenase Active Site. Inorganic Chemistry, 2007, 46, 3813-3815.	4.0	107
144	Phenoxazine Dyes for Dyeâ€Sensitized Solar Cells: Relationship Between Molecular Structure and Electron Lifetime. Chemistry - A European Journal, 2011, 17, 6415-6424.	3.3	107

#	Article	IF	CITATIONS
145	Catalytic Activation of H ₂ under Mild Conditions by an [FeFe]-Hydrogenase Model via an Active μ-Hydride Species. Journal of the American Chemical Society, 2013, 135, 13688-13691.	13.7	107
146	Efficient Perovskite Solar Cells Based on a Solution Processable Nickel(II) Phthalocyanine and Vanadium Oxide Integrated Hole Transport Layer. Advanced Energy Materials, 2017, 7, 1602556.	19.5	107
147	Atomically Thin Mesoporous In ₂ O _{3–} <i>_x</i> /In ₂ S ₃ Lateral Heterostructures Enabling Robust Broadband‣ight Photoâ€Electrochemical Water Splitting. Advanced Energy Materials, 2018, 8, 1701114.	19.5	106
148	Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 27126-27134.	13.8	106
149	Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model. Dalton Transactions, 2006, , 4599-4606.	3.3	105
150	Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Dalton Transactions, 2013, 42, 12059.	3.3	104
151	Convergent/Divergent Synthesis of a Linkerâ€Varied Series of Dyes for Dyeâ€Sensitized Solar Cells Based on the D35 Donor. Advanced Energy Materials, 2013, 3, 1647-1656.	19.5	103
152	Facile synthesis of fluorene-based hole transport materials for highly efficient perovskite solar cells and solid-state dye-sensitized solar cells. Nano Energy, 2016, 26, 108-113.	16.0	103
153	Visible light-driven water oxidation using a covalently-linked molecular catalyst–sensitizer dyad assembled on a TiO ₂ electrode. Chemical Science, 2016, 7, 1430-1439.	7.4	103
154	Triggering Lattice Oxygen Activation of Singleâ€Atomic Mo Sites Anchored on Ni–Fe Oxyhydroxides Nanoarrays for Electrochemical Water Oxidation. Advanced Materials, 2022, 34, e2202523.	21.0	103
155	Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region. Journal of Materials Chemistry, 2012, 22, 16709.	6.7	101
156	Toward Controlling Water Oxidation Catalysis: Tunable Activity of Ruthenium Complexes with Axial Imidazole/DMSO Ligands. Journal of the American Chemical Society, 2012, 134, 18868-18880.	13.7	101
157	D–A–D-Typed Hole Transport Materials for Efficient Perovskite Solar Cells: Tuning Photovoltaic Properties via the Acceptor Group. ACS Applied Materials & Interfaces, 2018, 10, 19697-19703.	8.0	101
158	Novel Small Molecular Materials Based on Phenoxazine Core Unit for Efficient Bulk Heterojunction Organic Solar Cells and Perovskite Solar Cells. Chemistry of Materials, 2015, 27, 1808-1814.	6.7	100
159	Phosphine Coordination to a Cobalt Diimine–Dioxime Catalyst Increases Stability during Light-Driven H ₂ Production. Inorganic Chemistry, 2012, 51, 2115-2120.	4.0	98
160	Device Fabrication for Water Oxidation, Hydrogen Generation, and CO2 Reduction via Molecular Engineering. Joule, 2018, 2, 36-60.	24.0	98
161	Photo-induced oxidation of a dinuclear Mn2II,II complex to the Mn2III,IV state by inter- and intramolecular electron transfer to RuIIItris-bipyridine. Journal of Inorganic Biochemistry, 2002, 91, 159-172.	3.5	97
162	A New Strategy for the Improvement of Photophysical Properties in Ruthenium(II) Polypyridyl Complexes. Synthesis and Photophysical and Electrochemical Characterization of Six Mononuclear Ruthenium(II) Bisterpyridine-Type Complexes. Inorganic Chemistry. 2005. 44. 3215-3225.	4.0	97

#	Article	IF	CITATIONS
163	Structural transformation mediated by 0-, m-, and p-phthalates from two to three dimensions for manganese/phthalate/4,4′-bpy complexes (4,4′-bpy = 4,4′-bipyridine). New Journal of Chemistry, 890-894.	20 03, 27	, 95
164	Photoinduced Electron Transfer between a Carotenoid and TiO2Nanoparticle. Journal of the American Chemical Society, 2002, 124, 13949-13957.	13.7	94
165	Efficient and Stable Inverted Planar Perovskite Solar Cells Employing Cul as Holeâ€Transporting Layer Prepared by Solid–Gas Transformation. Energy Technology, 2017, 5, 1836-1843.	3.8	94
166	Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy, 2016, 30, 59-68.	16.0	92
167	Highly Efficient Organic Sensitizers for Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 16816-16820.	3.1	91
168	Electrocatalytic hydrogen evolution from neutral water by molecular cobalt tripyridine–diamine complexes. Chemical Communications, 2013, 49, 9455.	4.1	91
169	Active Sites Intercalated Ultrathin Carbon Sheath on Nanowire Arrays as Integrated Core–Shell Architecture: Highly Efficient and Durable Electrocatalysts for Overall Water Splitting. Small, 2017, 13, 1702018.	10.0	91
170	Hydrogen-Bond Promoted Intramolecular Electron Transfer to Photogenerated Ru(III):  A Functional Mimic of TyrosineZ and Histidine 190 in Photosystem II. Journal of the American Chemical Society, 1999, 121, 6834-6842.	13.7	90
171	Progress in hole-transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 650-672.	12.9	90
172	Synthesis and characterization of manganese and copper corrole xanthene complexes as catalysts for water oxidation. Tetrahedron, 2007, 63, 1987-1994.	1.9	89
173	Intramolecularly two-centered cooperation catalysis for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Letters, 2008, 49, 6589-6592.	1.4	89
174	High conductivity Ag-based metal organic complexes as dopant-free hole-transport materials for perovskite solar cells with high fill factors. Chemical Science, 2016, 7, 2633-2638.	7.4	89
175	Optically Transparent Wood Substrate for Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 6061-6067.	6.7	89
176	Photoinduced Electron Transfer from a Higher Excited State of a Porphyrin in a Zinc Porphyrinâ^'Ruthenium(II)tris-Bipyridine Dyad. Journal of Physical Chemistry A, 1999, 103, 557-559.	2.5	88
177	The Role of 3D Molecular Structural Control in New Hole Transport Materials Outperforming <i>Spiro</i> â€OMeTAD in Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1601062.	19.5	87
178	Carbene–pyridine chelating 2Fe2S hydrogenase model complexes as highly active catalysts for the electrochemical reduction of protons from weak acid (HOAc). Dalton Transactions, 2007, , 1277-1283.	3.3	85
179	Enhanced performance of perovskite solar cells with P3HT hole-transporting materials via molecular p-type doping. RSC Advances, 2016, 6, 108888-108895.	3.6	85
180	3D Core–Shell NiFeCr Catalyst on a Cu Nanoarray for Water Oxidation: Synergy between Structural and Electronic Modulation. ACS Energy Letters, 2018, 3, 2865-2874.	17.4	85

#	Article	IF	CITATIONS
181	Defect Engineering of Photocatalysts for Solar Energy Conversion. Solar Rrl, 2020, 4, 1900487.	5.8	85
182	Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites. Nature Catalysis, 2022, 5, 414-429.	34.4	85
183	Preparation, Facile Deprotonation, and Rapid H/D Exchange of the μ-Hydride Diiron Model Complexes of the [FeFe]-Hydrogenase Containing a Pendant Amine in a Chelating Diphosphine Ligand. Inorganic Chemistry, 2009, 48, 11551-11558.	4.0	84
184	Artificial photosynthesis – functional devices for light driven water splitting with photoactive anodes based on molecular catalysts. Physical Chemistry Chemical Physics, 2014, 16, 12008.	2.8	84
185	Immobilizing Ru(bda) Catalyst on a Photoanode via Electrochemical Polymerization for Light-Driven Water Splitting. ACS Catalysis, 2015, 5, 3786-3790.	11.2	84
186	Electrical Behavior and Electron Transfer Modulation of Nickel–Copper Nanoalloys Confined in Nickel–Copper Nitrides Nanowires Array Encapsulated in Nitrogenâ€Doped Carbon Framework as Robust Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1803278.	14.9	84
187	Synthesis, Structures and Electrochemical Properties of Nitro- and Amino-Functionalized Diiron Azadithiolates as Active Site Models of Fe-Only Hydrogenases. Chemistry - A European Journal, 2004, 10, 4474-4479.	3.3	83
188	Conformational and Compositional Tuning of Phenanthrocarbazole-Based Dopant-Free Hole-Transport Polymers Boosting the Performance of Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 17681-17692.	13.7	83
189	Rutheniumâ^'Manganese Complexes for Artificial Photosynthesis:Â Factors Controlling Intramolecular Electron Transfer and Excited-State Quenching Reactions. Inorganic Chemistry, 2002, 41, 1534-1544.	4.0	82
190	Visible Light-Driven Water Oxidation Promoted by Host–Guest Interaction between Photosensitizer and Catalyst with A High Quantum Efficiency. Journal of the American Chemical Society, 2015, 137, 4332-4335.	13.7	81
191	Engineering MoO _{<i>x</i>} /MXene Hole Transfer Layers for Unexpected Boosting of Photoelectrochemical Water Oxidation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	80
192	Modifying organic phenoxazine dyes for efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 12462.	6.7	79
193	Linker Unit Modification of Triphenylamine-Based Organic Dyes for Efficient Cobalt Mediated Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 21029-21036.	3.1	79
194	Highâ€Performance Photoelectrochemical Cells Based on a Binuclear Ruthenium Catalyst for Visibleâ€Lightâ€Driven Water Oxidation. ChemSusChem, 2014, 7, 2801-2804.	6.8	79
195	Acceptor–Donor–Acceptor type ionic molecule materials for efficient perovskite solar cells and organic solar cells. Nano Energy, 2016, 30, 387-397.	16.0	79
196	Integration of FeOOH and Zeolitic Imidazolate Frameworkâ€Đerived Nanoporous Carbon as an Efficient Electrocatalyst for Water Oxidation. Advanced Energy Materials, 2018, 8, 1702598.	19.5	79
197	Copper-based homogeneous and heterogeneous catalysts for electrochemical water oxidation. Nanoscale, 2020, 12, 4187-4218.	5.6	79
198	Engineering of hole-selective contact for low temperature-processed carbon counter electrode-based perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24272-24280.	10.3	78

#	Article	IF	CITATIONS
199	Chemical Dopant Engineering in Hole Transport Layers for Efficient Perovskite Solar Cells: Insight into the Interfacial Recombination. ACS Nano, 2018, 12, 10452-10462.	14.6	78
200	Water Oxidation Catalysis: Influence of Anionic Ligands upon the Redox Properties and Catalytic Performance of Mononuclear Ruthenium Complexes. Inorganic Chemistry, 2012, 51, 3388-3398.	4.0	77
201	Catalytic Water Oxidation by Mononuclear Ru Complexes with an Anionic Ancillary Ligand. Inorganic Chemistry, 2013, 52, 2505-2518.	4.0	77
202	Simultaneous Multiple Wavelength Upconversion in a Core–Shell Nanoparticle for Enhanced Near Infrared Light Harvesting in a Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces, 2014, 6, 18018-18025.	8.0	77
203	Cu(II) Complexes as p-Type Dopants in Efficient Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 497-503.	17.4	77
204	Why nature chose the Mn ₄ CaO ₅ cluster as water-splitting catalyst in photosystem II: a new hypothesis for the mechanism of O–O bond formation. Dalton Transactions, 2018, 47, 14381-14387.	3.3	77
205	Conformal Macroporous Inverse Opal Oxynitride-Based Photoanode for Robust Photoelectrochemical Water Splitting. Journal of the American Chemical Society, 2021, 143, 7402-7413.	13.7	76
206	A Biomimetic Model System for the Water Oxidizing Triad in Photosystem II. Journal of the American Chemical Society, 1999, 121, 89-96.	13.7	75
207	Hydrogen Production by Nobleâ€Metalâ€Free Molecular Catalysts and Related Nanomaterials. ChemSusChem, 2010, 3, 551-554.	6.8	75
208	Molecular complexes in water oxidation: Pre-catalysts or real catalysts. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 71-89.	11.6	75
209	A new class of epitaxial porphyrin metal–organic framework thin films with extremely high photocarrier generation efficiency: promising materials for all-solid-state solar cells. Journal of Materials Chemistry A, 2016, 4, 12739-12747.	10.3	75
210	Stainless steel as an efficient electrocatalyst for water oxidation in alkaline solution. International Journal of Hydrogen Energy, 2016, 41, 5230-5233.	7.1	75
211	Re-Investigation of Cobalt Porphyrin for Electrochemical Water Oxidation on FTO Surface: Formation of CoOx as Active Species. ACS Catalysis, 2017, 7, 1143-1149.	11.2	74
212	Towards an artificial model for Photosystem II: a manganese(II,II) dimer covalently linked to ruthenium(II) tris-bipyridine via a tyrosine derivative1Preliminary accounts of this work have been presented as invited lectures at: EUCHEM Conference, Artificial Photosynthesis, May 1998, Sigtuna, Sweden; Fourth Nordic Congress on Photosynthesis, Nov. 1998, Naantali, Finland; EBEC, July 1998,	3.5	73
213	GA¶teborg, Sweden.1. Journal of Inorganic Biochemistry, 2000, 78, 15-22. An insight into the protonation property of a diiron azadithiolate complex pertinent to the active site of Fe-only hydrogenases. Chemical Communications, 2006, , 305-307.	4.1	73
214	A proton–hydride diiron complex with a base-containing diphosphine ligand relevant to the [FeFe]-hydrogenase active site. Chemical Communications, 2008, , 5800.	4.1	73
215	Promoting Effect of Electrostatic Interaction between a Cobalt Catalyst and a Xanthene Dye on Visible-Light-Driven Electron Transfer and Hydrogen Production. Journal of Physical Chemistry C, 2011, 115, 15089-15096.	3.1	73
216	Electrochemical and Photoelectrochemical Water Oxidation by Supported Cobalt–Oxo Cubanes. ACS Catalysis, 2014, 4, 804-809.	11.2	73

#	Article	IF	CITATIONS
217	Tuning proton coupled electron transfer from tyrosine: A competition between concerted and step-wise mechanisms. Physical Chemistry Chemical Physics, 2004, 6, 4851-4858.	2.8	72
218	Photoinduced intramolecular charge-transfer state in thiophene-ï€-conjugated donor–acceptor molecules. Journal of Molecular Structure, 2008, 876, 102-109.	3.6	72
219	Ce ^{IV} ―and Lightâ€Driven Water Oxidation by [Ru(terpy)(pic) ₃] ²⁺ Analogues: Catalytic and Mechanistic Studies. ChemSusChem, 2011, 4, 238-244.	6.8	72
220	Tuning the HOMO and LUMO Energy Levels of Organic Dyes with <i>N</i> -Carboxomethylpyridinium as Acceptor To Optimize the Efficiency of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 9076-9083.	3.1	72
221	CdSe quantum dots/molecular cobalt catalyst co-grafted open porous NiO film as a photocathode for visible light driven H ₂ evolution from neutral water. Journal of Materials Chemistry A, 2015, 3, 18852-18859.	10.3	72
222	Constructive Effects of Alkyl Chains: A Strategy to Design Simple and Non‣piro Hole Transporting Materials for Highâ€Efficiency Mixedâ€Ion Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1502536.	19.5	72
223	Incorporation of Counter Ions in Organic Molecules: New Strategy in Developing Dopantâ€Free Hole Transport Materials for Efficient Mixedâ€Ion Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602736.	19.5	72
224	Electrocatalytic water oxidation by a macrocyclic Cu(<scp>ii</scp>) complex in neutral phosphate buffer. Chemical Communications, 2016, 52, 10377-10380.	4.1	71
225	Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiO core-shell heterostructured nanoparticulate film. Nano Energy, 2017, 38, 175-184.	16.0	71
226	Electrocatalytic water oxidation by copper(<scp>ii</scp>) complexes containing a tetra- or pentadentate amine-pyridine ligand. Chemical Communications, 2017, 53, 4374-4377.	4.1	71
227	Simultaneous oxidation of alcohols and hydrogen evolution in a hybrid system under visible light irradiation. Applied Catalysis B: Environmental, 2018, 225, 258-263.	20.2	71
228	Enhanced Performance of pâ€Type Dyeâ€Sensitized Solar Cells Based on Ultrasmall Mgâ€Doped CuCrO ₂ Nanocrystals. ChemSusChem, 2013, 6, 1432-1437.	6.8	68
229	Promoting the Water Oxidation Catalysis by Synergistic Interactions between Ni(OH) ₂ and Carbon Nanotubes. Advanced Energy Materials, 2016, 6, 1600516.	19.5	68
230	Visible-light-absorbing semiconductor/molecular catalyst hybrid photoelectrodes for H ₂ or O ₂ evolution: recent advances and challenges. Sustainable Energy and Fuels, 2017, 1, 1641-1663.	4.9	68
231	Efficient solid state dye-sensitized solar cells based on an oligomer hole transport material and an organic dye. Journal of Materials Chemistry A, 2013, 1, 14467.	10.3	67
232	A solution-processable copper(<scp>ii</scp>) phthalocyanine derivative as a dopant-free hole-transporting material for efficient and stable carbon counter electrode-based perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 17862-17866.	10.3	67
233	Synthesis, Structural Characterizations and Magnetic Properties of a Series of Mono-, Di- and Polynuclear Manganese Pyridinecarboxylate Compounds. European Journal of Inorganic Chemistry, 2004, 2004, 1454-1464.	2.0	66
234	An approach to water-soluble hydrogenase active site models: Synthesis and electrochemistry of diiron dithiolate complexes with 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane ligand(s). Journal of Organometallic Chemistry, 2006, 691, 5045-5051.	1.8	66

#	Article	IF	CITATIONS
235	Tailoring Active Sites in Mesoporous Defectâ€Rich NC/V _o â€WON Heterostructure Array for Superior Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2019, 9, 1803693.	19.5	66
236	Covalently Linked Ruthenium(II)â^'Manganese(II) Complexes: Distance Dependence of Quenching and Electron Transfer. European Journal of Inorganic Chemistry, 2001, 2001, 1019-1029.	2.0	65
237	Electron Donorâ^'Acceptor Dyads and Triads Based on Tris(bipyridine)ruthenium(II) and Benzoquinone: Synthesis, Characterization, and Photoinduced Electron Transfer Reactions. Inorganic Chemistry, 2003, 42, 5173-5184.	4.0	65
238	Nitro group as a new anchoring group for organic dyes in dye-sensitized solar cells. Chemical Communications, 2012, 48, 6663.	4.1	65
239	Highly efficient molecular nickel catalysts for electrochemical hydrogen production from neutral water. Chemical Communications, 2014, 50, 14153-14156.	4.1	65
240	Identification of Mâ€NH ₂ â€NH ₂ Intermediate and Rate Determining Step for Nitrogen Reduction with Bioinspired Sulfurâ€Bonded FeW Catalyst. Angewandte Chemie - International Edition, 2021, 60, 20331-20341.	13.8	65
241	One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite Cul/CuSCN hole-transporting layer. Journal of Materials Chemistry A, 2018, 6, 21435-21444.	10.3	64
242	Selectively Etching Vanadium Oxide to Modulate Surface Vacancies of Unary Metal–Based Electrocatalysts for Highâ€Performance Water Oxidation. Advanced Energy Materials, 2020, 10, 1903571.	19.5	64
243	Synthesis and Electron Transfer Studies of Rutheniumâ^'Terpyridine-Based Dyads Attached to Nanostructured TiO2. Inorganic Chemistry, 2007, 46, 638-651.	4.0	63
244	Distance and Driving Force Dependencies of Electron Injection and Recombination Dynamics in Organic Dye-Sensitized Solar Cellsâ€. Journal of Physical Chemistry B, 2010, 114, 14358-14363.	2.6	63
245	Bis(1,1-bis(2-pyridyl)ethane)copper(<scp>i</scp> /i <scp>ii</scp>) as an efficient redox couple for liquid dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 14550-14554.	10.3	63
246	Experimental study and numerical optimization on a vane-type separator for bubble separation in TMSR. Progress in Nuclear Energy, 2014, 74, 1-13.	2.9	62
247	Photocatalytic water oxidation at soft interfaces. Chemical Science, 2014, 5, 2683-2687.	7.4	62
248	Defective and " <i>c</i> -Disordered― <i>Hortensia</i> -like Layered MnO _{<i>x</i>} as an Efficient Electrocatalyst for Water Oxidation at Neutral pH. ACS Catalysis, 2017, 7, 6311-6322.	11.2	62
249	Electronic and Molecular Surface Structure of a Polyeneâ~'Diphenylaniline Dye Adsorbed from Solution onto Nanoporous TiO2. Journal of Physical Chemistry C, 2007, 111, 8580-8586.	3.1	61
250	Structures, protonation, and electrochemical properties of diiron dithiolate complexes containing pyridyl-phosphine ligands. Dalton Transactions, 2009, , 1919.	3.3	61
251	Oxygen evolution at functionalized carbon surfaces: a strategy for immobilization of molecular water oxidation catalysts. Chemical Communications, 2012, 48, 10025.	4.1	61
252	Efficient Dyeâ€Sensitized Solar Cells Based on Hydroquinone/Benzoquinone as a Bioinspired Redox Couple. Angewandte Chemie - International Edition, 2012, 51, 9896-9899.	13.8	61

#	Article	IF	CITATIONS
253	Water Oxidation Catalyzed by Mononuclear Ruthenium Complexes with a 2,2′-Bipyridine-6,6′-dicarboxylate (bda) Ligand: How Ligand Environment Influences the Catalytic Behavior. Inorganic Chemistry, 2014, 53, 1307-1319.	4.0	61
254	Visible light-driven water oxidation with a subporphyrin sensitizer and a water oxidation catalyst. Chemical Communications, 2016, 52, 13702-13705.	4.1	61
255	A wide pH range optical sensing system based on a sol–gel encapsulated amino-functionalised corrole. Analyst, The, 2006, 131, 388.	3.5	60
256	Protonation, electrochemical properties and molecular structures of halogen-functionalized diiron azadithiolate complexes related to the active site of iron-only hydrogenases. Dalton Transactions, 2007, , 3812.	3.3	60
257	Wave-Function Engineering of CdSe/CdS Core/Shell Quantum Dots for Enhanced Electron Transfer to a TiO ₂ Substrate. Journal of Physical Chemistry C, 2010, 114, 15184-15189.	3.1	60
258	A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy, 2018, 53, 405-414.	16.0	60
259	Fe–S complexes containing five-membered heterocycles: novel models for the active site of hydrogenases with unusual low reduction potential. Dalton Transactions, 2007, , 896-902.	3.3	59
260	A Host-Induced Intramolecular Charge-Transfer Complex and Light-Driven Radical Cation Formation of a Molecular Triad with Cucurbit[8]uril. Journal of Organic Chemistry, 2008, 73, 3775-3783.	3.2	59
261	Surface Molecular Quantification and Photoelectrochemical Characterization of Mixed Organic Dye and Coadsorbent Layers on TiO ₂ for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 11903-11910.	3.1	59
262	Enhancement of p-Type Dye-Sensitized Solar Cell Performance by Supramolecular Assembly of Electron Donor and Acceptor. Scientific Reports, 2014, 4, 4282.	3.3	59
263	Integrated Design of Organic Hole Transport Materials for Efficient Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401185.	19.5	59
264	Application of benzodithiophene based A–D–A structured materials in efficient perovskite solar cells and organic solar cells. Nano Energy, 2016, 23, 40-49.	16.0	59
265	Artificial Photosynthesis: Beyond Mimicking Nature. ChemSusChem, 2017, 10, 4228-4235.	6.8	59
266	Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer. Inorganic Chemistry Communication, 2003, 6, 989-991.	3.9	58
267	Oxygen evolution from water oxidation on molecular catalysts confined in the nanocages of mesoporous silicas. Energy and Environmental Science, 2012, 5, 8229.	30.8	58
268	Visible light-driven water oxidation catalyzed by mononuclear ruthenium complexes. Journal of Catalysis, 2013, 306, 129-132.	6.2	58
269	Chemical and Physical Reduction of High Valence Ni States in Mesoporous NiO Film for Solar Cell Application. ACS Applied Materials & amp; Interfaces, 2017, 9, 33470-33477.	8.0	58
270	Anthraquinone dyes as photosensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1863-1871.	6.2	57

#	Article	IF	CITATIONS
271	Dyeâ€Sensitized Solar Cells Based on a Donor–Acceptor System with a Pyridine Cation as an Electronâ€Withdrawing Anchoring Group. Chemistry - A European Journal, 2012, 18, 16196-16202.	3.3	57
272	A study visualizing the collapse of vapor bubbles in a subcooled pool. International Journal of Heat and Mass Transfer, 2015, 88, 597-608.	4.8	57
273	1,1,2,2â€Tetrachloroethane (TeCA) as a Solvent Additive for Organic Hole Transport Materials and Its Application in Highly Efficient Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1402340.	19.5	57
274	A Computational Study of Oâ^'O Bond Formation Catalyzed by Mono- and Bis-MnIVâ^'Corrole Complexes. Inorganic Chemistry, 2007, 46, 7075-7086.	4.0	56
275	Electronic and molecular structures of organic dye/TiO2 interfaces for solar cell applications: a core level photoelectron spectroscopy study. Physical Chemistry Chemical Physics, 2010, 12, 1507.	2.8	56
276	Efficient dye-sensitized solar cells based on an iodine-free electrolyte using l-cysteine/l-cystine as a redox couple. Energy and Environmental Science, 2012, 5, 6290-6293.	30.8	56
277	Coâ€sensitization of Organic Dyes for Efficient Dyeâ€Sensitized Solar Cells. ChemSusChem, 2013, 6, 70-77.	6.8	56
278	Degradation of Cyanoacrylic Acidâ€Based Organic Sensitizers in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2013, 6, 1270-1275.	6.8	56
279	Magnetizing lead-free halide double perovskites. Science Advances, 2020, 6, .	10.3	56
280	Ethylene oligomerization by salen-type zirconium complexes to low-carbon linear α-olefins. Journal of Catalysis, 2003, 220, 392-398.	6.2	55
281	Hostâ^'Guest Chemistry and Light Driven Molecular Lock of Ru(bpy)3â^'Viologen with Cucurbit[7â^'8]urils. Journal of Physical Chemistry B, 2007, 111, 13357-13363.	2.6	55
282	Azadithiolates cofactor of the iron-only hydrogenase and its PR3-monosubstituted derivatives: Synthesis, structure, electrochemistry and protonation. Journal of Organometallic Chemistry, 2007, 692, 5501-5507.	1.8	55
283	Development of an organic redox couple and organic dyes for aqueous dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 9752.	30.8	55
284	Molecular engineering for efficient and selective iron porphyrin catalysts for electrochemical reduction of CO ₂ to CO. Chemical Communications, 2016, 52, 14478-14481.	4.1	55
285	Chemistry Future: Priorities and Opportunities from the Sustainability Perspective. ChemSusChem, 2017, 10, 6-13.	6.8	55
286	Achieving High Openâ€Circuit Voltages up to 1.57 V in Holeâ€Transportâ€Materialâ€Free MAPbBr ₃ Solar Cells with Carbon Electrodes. Advanced Energy Materials, 2018, 8, 1701159.	19.5	55
287	A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 1976-1985.	13.8	55
288	The mechanism for proton–coupled electron transfer from tyrosine in a model complex and comparisons with Y Z oxidation in photosystem II. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1471-1479.	4.0	54

#	Article	IF	CITATIONS
289	A thiolate/disulfide ionic liquid electrolyte for organic dye-sensitized solar cells based on Pt-free counter electrodes. Chemical Communications, 2011, 47, 10124.	4.1	54
290	Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper Phthalocyanine Derivative as Holeâ€Transporting Material with Improved Performance and Stability. ChemSusChem, 2017, 10, 1838-1845.	6.8	54
291	Surface-Supported Metal–Organic Framework Thin-Film-Derived Transparent CoS _{1.097} @N-Doped Carbon Film as an Efficient Counter Electrode for Bifacial Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 14862-14870.	8.0	54
292	Photoisomerization of the cyanoacrylic acid acceptor group – a potential problem for organic dyes in solar cells. Physical Chemistry Chemical Physics, 2014, 16, 2251.	2.8	53
293	Highly Active Threeâ€Dimensional NiFe/Cu ₂ O Nanowires/Cu Foam Electrode for Water Oxidation. ChemSusChem, 2017, 10, 1475-1481.	6.8	53
294	Conceptual design and experimental investigation involving a modular desalination system composed of arrayed tubular solar stills. Applied Energy, 2016, 179, 972-984.	10.1	52
295	High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material. Scientific Reports, 2017, 7, 42564.	3.3	52
296	Graphene Dots Embedded Phosphide Nanosheet-Assembled Tubular Arrays for Efficient and Stable Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 24600-24607.	8.0	52
297	Effects of rolling on characteristics of single-phase water flow in narrow rectangular ducts. Nuclear Engineering and Design, 2012, 247, 221-229.	1.7	51
298	Red-Absorbing Cationic Acceptor Dyes for Photocathodes in Tandem Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16536-16546.	3.1	51
299	An iron-based thin film as a highly efficient catalyst for electrochemical water oxidation in a carbonate electrolyte. Chemical Communications, 2016, 52, 5753-5756.	4.1	51
300	A visualized study of the motion of individual bubbles in a venturi-type bubble generator. Progress in Nuclear Energy, 2017, 97, 74-89.	2.9	51
301	CO-Migration in the Ligand Substitution Process of the Chelating Diphosphite Diiron Complex (μ-pdt)[Fe(CO) ₃][Fe(CO){(EtO) ₂ PN(Me)P(OEt) ₂ }]. Inorganic Chemistry, 2008, 47, 6948-6955.	4.0	50
302	Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes. Nanoscale, 2013, 5, 7963.	5.6	50
303	Molecular Design and Performance of Hydroxylpyridium Sensitizers for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 5227-5231.	8.0	50
304	Ironâ€Based Molecular Water Oxidation Catalysts: Abundant, Cheap, and Promising. Chemistry - an Asian Journal, 2019, 14, 31-43.	3.3	50
305	The application of transition metal complexes in hole-transporting layers for perovskite solar cells: Recent progress and future perspectives. Coordination Chemistry Reviews, 2020, 406, 213143.	18.8	50
306	Spectroscopic and crystallographic evidence for the N-protonated FeIFeI azadithiolate complex related to the active site of Fe-only hydrogenases. Chemical Communications, 2005, , 3221.	4.1	49

#	Article	IF	CITATIONS
307	Study of Highly Efficient Bimetallic Ruthenium Tris-bipyridyl ECL Labels for Coreactant System. Analytical Chemistry, 2009, 81, 10227-10231.	6.5	49
308	Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent. ChemSusChem, 2015, 8, 3242-3247.	6.8	49
309	Sensitizer-Catalyst Assemblies for Water Oxidation. Inorganic Chemistry, 2015, 54, 2742-2751.	4.0	49
310	Design, synthesis and application of a π-conjugated, non-spiro molecular alternative as hole-transport material for highly efficient dye-sensitized solar cells and perovskite solar cells. Journal of Power Sources, 2017, 344, 11-14.	7.8	49
311	Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells. Chemical Communications, 2018, 54, 9571-9574.	4.1	49
312	Poly(3,4-ethylenedioxythiophene) Hole-Transporting Material Generated by Photoelectrochemical Polymerization in Aqueous and Organic Medium for All-Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16591-16601.	3.1	48
313	Efficient dye-sensitized solar cells with [copper(6,6′-dimethyl-2,2′-bipyridine) ₂] ^{2+/1+} redox shuttle. RSC Advances, 2017 7, 4611-4615.	, 3.6	48
314	Ultrafast Relaxation Dynamics in Zinc Tetraphenylporphyrin Surface-Mounted Metal Organic Framework. Journal of Physical Chemistry C, 2018, 122, 50-61.	3.1	48
315	Synthesis and Characterization of a Dinuclear Manganese(III,III) Complex with Three Phenolate Ligands. European Journal of Inorganic Chemistry, 2002, 2002, 2965-2974.	2.0	47
316	Gas-templating of hierarchically structured Ni–Co–P for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 7564-7570.	10.3	47
317	Paired Electrocatalytic Oxygenation and Hydrogenation of Organic Substrates with Water as the Oxygen and Hydrogen Source. Angewandte Chemie, 2019, 131, 9253-9257.	2.0	47
318	A Phenanthrocarbazoleâ€Based Dopantâ€Free Holeâ€Transport Polymer with Noncovalent Conformational Locking for Efficient Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	47
319	The photoinduced long-lived charge-separated state of Ru(bpy)3–methylviologen with cucurbit[8]uril in aqueous solution. Chemical Communications, 2006, , 4195-4197.	4.1	46
320	Pendant bases as proton transfer relays in diiron dithiolate complexes inspired by [Fe–Fe] hydrogenase active site. Journal of Organometallic Chemistry, 2008, 693, 2828-2834.	1.8	46
321	Attachment of a Hydrogenâ€Bonding Carboxylate Side Chain to an [FeFe]â€Hydrogenase Model Complex: Influence on the Catalytic Mechanism. Chemistry - A European Journal, 2010, 16, 2537-2546.	3.3	46
322	The Ru-tpc Water Oxidation Catalyst and Beyond: Water Nucleophilic Attack Pathway versus Radical Coupling Pathway. ACS Catalysis, 2017, 7, 2956-2966.	11.2	46
323	Synthesis, Structure and Magnetic Properties of a Series of Novel Isophthalate-Bridged Manganese(II) Polymers with Double-Layer or Double-Chain Structures. European Journal of Inorganic Chemistry, 2004, 2004, 3316-3325.	2.0	45
324	Carotenoid and Pheophytin on Semiconductor Surface:  Self-Assembly and Photoinduced Electron Transfer. Journal of the American Chemical Society, 2004, 126, 3066-3067.	13.7	45

#	Article	IF	CITATIONS
325	Chemical and photochemical oxidation of organic substrates by ruthenium aqua complexes with water as an oxygen source. Chemical Communications, 2011, 47, 8949.	4.1	45
326	A photo-induced electron transfer study of an organic dye anchored on the surfaces of TiO2 nanotubes and nanoparticles. Physical Chemistry Chemical Physics, 2011, 13, 4032.	2.8	45
327	The combination of a new organic D–π–A dye with different organic hole-transport materials for efficient solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 4420-4427.	10.3	45
328	Photochemical hydrogen production from water catalyzed by CdTe quantum dots/molecular cobalt catalyst hybrid systems. Chemical Communications, 2015, 51, 7008-7011.	4.1	44
329	Model development and experimental verification for tubular solar still operating under vacuum condition. Energy, 2018, 157, 115-130.	8.8	44
330	An experimental study of bubble sliding characteristics in narrow channel. International Journal of Heat and Mass Transfer, 2013, 57, 89-99.	4.8	43
331	Photocatalytic Water Oxidation by Molecular Assemblies Based on Cobalt Catalysts. ChemSusChem, 2014, 7, 2453-2456.	6.8	43
332	An organic hydrophilic dye for water-based dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 19964-19971.	2.8	43
333	Singlet Fission from Upper Excited Electronic States of Cofacial Perylene Dimer. Journal of Physical Chemistry Letters, 2019, 10, 2428-2433.	4.6	43
334	Formation of a new hybrid complex via coordination interaction between 5,10,15-tritolyl-20-(4- and) Tj ETQq0 C polyoxometalate (M=Co2+ and Ni2+). Inorganica Chimica Acta, 2010, 363, 2185-2192.	0 rgBT /0 2.4	verlock 10 Tf 42
335	Photocatalytic Water Reduction and Study of the Formation of Fe ^I Fe ⁰ Species in Diiron Catalyst Sytems. ChemSusChem, 2012, 5, 913-919.	6.8	42
336	Engineering of highly efficient tetrahydroquinoline sensitizers for dye-sensitized solar cells. Tetrahedron, 2012, 68, 552-558.	1.9	42
337	Immobilization of a molecular catalyst on carbon nanotubes for highly efficient electro-catalytic water oxidation. Chemical Communications, 2014, 50, 13948-13951.	4.1	42
338	Homogeneous Oxidation of Water by Iron Complexes with Macrocyclic Ligands. Chemistry - an Asian Journal, 2014, 9, 1515-1518.	3.3	42
339	Electrochemical driven water oxidation by molecular catalysts in situ polymerized on the surface of graphite carbon electrode. Chemical Communications, 2015, 51, 7883-7886.	4.1	42
340	Photocatalytic water oxidation via combination of BiVO ₄ –RGO and molecular cobalt catalysts. Chemical Communications, 2016, 52, 3050-3053.	4.1	42
341	A Cu ₂ Se–Cu ₂ O film electrodeposited on titanium foil as a highly active and stable electrocatalyst for the oxygen evolution reaction. Chemical Communications, 2018, 54, 4979-4982.	4.1	42
342	Aggregate Manganese Schiff Base Moieties by Terephthalate or Acetate:  Dinuclear Manganese and Trinuclear Mixed Metal Mn2/Na Complexes. Inorganic Chemistry, 2003, 42, 3540-3548.	4.0	41

#	Article	IF	CITATIONS
343	A furan-containing diiron azadithiolate hexacarbonyl complex with unusual lower catalytic proton reduction potential. Inorganic Chemistry Communication, 2006, 9, 290-292.	3.9	41
344	Type-II colloidal quantum dot sensitized solar cells with a thiourea based organic redox couple. Journal of Materials Chemistry, 2012, 22, 6032.	6.7	41
345	Highly Efficient Integrated Perovskite Solar Cells Containing a Small Molecule-PC ₇₀ BM Bulk Heterojunction Layer with an Extended Photovoltaic Response Up to 900 nm. Chemistry of Materials, 2016, 28, 8631-8639.	6.7	41
346	Molecular engineering of D–A–i̇́€â€"A sensitizers for highly efficient solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 3157-3166.	10.3	41
347	Improvement of flow distribution and heat transfer performance of a self-similarity heat sink with a modification to its structure. Applied Thermal Engineering, 2017, 121, 163-171.	6.0	41
348	Characteristics and mechanism of bubble breakup in a bubble generator developed for a small TMSR. Annals of Nuclear Energy, 2017, 109, 69-81.	1.8	41
349	Planar FAPbBr ₃ Solar Cells with Power Conversion Efficiency above 10%. ACS Energy Letters, 2018, 3, 1808-1814.	17.4	41
350	Iron carbonate hydroxide templated binary metal–organic frameworks for highly efficient electrochemical water oxidation. Chemical Communications, 2019, 55, 14773-14776.	4.1	41
351	3D Porous Pyramid Heterostructure Array Realizing Efficient Photoâ€Electrochemical Performance. Advanced Energy Materials, 2020, 10, 1902935.	19.5	41
352	Progress of Experimental and Computational Catalyst Design for Electrochemical Nitrogen Fixation. ACS Catalysis, 2022, 12, 8936-8975.	11.2	41
353	The OO Bonding in Water Oxidation: the Electronic Structure Portrayal of a Concerted Oxygen Atom–Proton Transfer Pathway. Chemistry - A European Journal, 2011, 17, 8313-8317.	3.3	40
354	Femtosecond to millisecond studies of electron transfer processes in a donor–(π-spacer)–acceptor series of organic dyes for solar cells interacting with titania nanoparticles and ordered nanotube array films. Physical Chemistry Chemical Physics, 2012, 14, 2816.	2.8	40
355	Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays. ACS Applied Materials & Interfaces, 2016, 8, 30143-30151.	8.0	40
356	Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co ₄ O ₄ Cubane Catalyst. Angewandte Chemie, 2017, 129, 7015-7019.	2.0	40
357	An investigation on the performance of a micro-scale Venturi bubble generator. Chemical Engineering Journal, 2020, 386, 120980.	12.7	40
358	Title is missing!. Angewandte Chemie, 2003, 115, 3407-3410.	2.0	39
359	Synthesis and Characterization of Dinuclear Ruthenium Complexes Covalently Linked to Rull Tris-bipyridine: An Approach to Mimics of the Donor Side of Photosystem II. Chemistry - A European Journal, 2005, 11, 7305-7314.	3.3	39
360	Diiron azadithiolates with hydrophilic phosphatriazaadamantane ligand as iron-only hydrogenase active site models: Synthesis, structure, and electrochemical study. Inorganica Chimica Acta, 2007, 360, 2411-2419.	2.4	39

#	Article	IF	CITATIONS
361	Highly enantioselective sulfoxidation with vanadium catalysts of Schiff bases derived from bromo- and iodo-functionalized hydroxynaphthaldehydes. Journal of Catalysis, 2010, 273, 177-181.	6.2	39
362	Preparation and structures of enantiomeric dinuclear zirconium and hafnium complexes containing two homochiral N atoms, and their catalytic property for polymerization of rac-lactide. Dalton Transactions, 2010, 39, 4440.	3.3	39
363	A highly efficient colourless sulfur/iodide-based hybrid electrolyte for dye-sensitized solar cells. RSC Advances, 2012, 2, 3625.	3.6	39
364	Chemical and photocatalytic water oxidation by mononuclear Ru catalysts. Chinese Journal of Catalysis, 2013, 34, 1489-1495.	14.0	39
365	In Situ Phaseâ€Induced Spatial Charge Separation in Core–Shell Oxynitride Nanocube Heterojunctions Realizing Robust Solar Water Splitting. Advanced Energy Materials, 2017, 7, 1700171.	19.5	39
366	Identifying MnVII-oxo Species during Electrochemical Water Oxidation by Manganese Oxide. IScience, 2018, 4, 144-152.	4.1	39
367	Boosting the power conversion efficiency of perovskite solar cells to 17.7% with an indolo[3,2- <i>b</i>]carbazole dopant-free hole transporting material by improving its spatial configuration. Journal of Materials Chemistry A, 2019, 7, 14835-14841.	10.3	39
368	Intramolecular Electron Transfer from Manganese(II) Coordinatively Linked to a Photogenerated Ru(III)â^'Polypyridine Complex:  A Kinetic Analysis. Journal of Physical Chemistry A, 1998, 102, 2512-2518.	2.5	38
369	Electron, proton and hydrogen–atom transfers in photosynthetic water oxidation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1383-1394.	4.0	38
370	Synthesis and Photophysics of One Mononuclear Mn(III) and One Dinuclear Mn(III,III) Complex Covalently Linked to a Ruthenium(II) Tris(bipyridyl) Complex. Inorganic Chemistry, 2003, 42, 7502-7511.	4.0	38
371	Iron(III) Complexes with a Tripodal N ₃ O Ligand Containing an Internal Base as a Model for Catechol Intradiol-Cleaving Dioxygenases. Inorganic Chemistry, 2007, 46, 9364-9371.	4.0	38
372	Phenothiazine derivatives-based D–π–A and D–A–π–A organic dyes for dye-sensitized solar cells. RSC Advances, 2014, 4, 24377.	3.6	38
373	Intramolecular Iron-Mediated C–H Bond Heterolysis with an Assist of Pendant Base in a [FeFe]-Hydrogenase Model. Journal of the American Chemical Society, 2014, 136, 16817-16823.	13.7	38
374	Improvement of Electrochemical Water Oxidation by Fineâ€Tuning the Structure of Tetradentate N ₄ Ligands of Molecular Copper Catalysts. ChemSusChem, 2017, 10, 4581-4588.	6.8	38
375	Electrochemically polymerized poly (3, 4-phenylenedioxythiophene) as efficient and transparent counter electrode for dye sensitized solar cells. Electrochimica Acta, 2019, 300, 482-488.	5.2	38
376	Stabilization of a molecular water oxidation catalyst on a dyeâ^'sensitized photoanode by aÂpyridyl anchor. Nature Communications, 2020, 11, 4610.	12.8	38
377	Electrocatalytic Hydrogenation and Oxidation in Aqueous Conditions ^{â€} . Chinese Journal of Chemistry, 2020, 38, 996-1004.	4.9	38
378	Intramolecular electron transfer from coordinated manganese(ii) to photogenerated ruthenium(iii). Chemical Communications, 1997, , 607-608.	4.1	37

#	Article	IF	CITATIONS
379	A tridentate ligand for preparation of bisterpyridine-like ruthenium(II) complexes with an increased excited state lifetime. Inorganic Chemistry Communication, 2004, 7, 337-340.	3.9	37
380	Mono- and binuclear complexes of iron(ii) and iron(iii) with an N4O ligand: synthesis, structures and catalytic properties in alkane oxidation. Dalton Transactions, 2006, , 2427.	3.3	37
381	Preparation, structures and electrochemical property of phosphine substituted diiron azadithiolates relevant to the active site of Fe-only hydrogenases. Journal of Inorganic Biochemistry, 2007, 101, 506-513.	3.5	37
382	Diiron dithiolate complexes containing intra-ligand NHâ⊄S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential. Dalton Transactions, 2008, , 2400.	3.3	37
383	Effect of the acceptor on the performance of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 17452.	2.8	37
384	From Ru-bda to Ru-bds: a step forward to highly efficient molecular water oxidation electrocatalysts under acidic and neutral conditions. Nature Communications, 2021, 12, 373.	12.8	37
385	Light-induced multistep oxidation of dinuclear manganese complexes for artificial photosynthesis. Journal of Inorganic Biochemistry, 2004, 98, 733-745.	3.5	36
386	Stable dye-sensitized solar cells based on organic chromophores and ionic liquid electrolyte. Solar Energy, 2011, 85, 1189-1194.	6.1	36
387	Combining a Small Hole-Conductor Molecule for Efficient Dye Regeneration and a Hole-Conducting Polymer in a Solid-State Dye-Sensitized Solar Cell. Journal of Physical Chemistry C, 2012, 116, 18070-18078.	3.1	36
388	Improved Performance of Colloidal CdSe Quantum Dot-Sensitized Solar Cells by Hybrid Passivation. ACS Applied Materials & Interfaces, 2014, 6, 18808-18815.	8.0	36
389	A Cuâ€Based Nanoparticulate Film as Superâ€Active and Robust Catalyst Surpasses Pt for Electrochemical H ₂ Production from Neutral and Weak Acidic Aqueous Solutions. Advanced Energy Materials, 2016, 6, 1502319.	19.5	36
390	Characterization of a trinuclear ruthenium species in catalytic water oxidation by Ru(bda)(pic) ₂ in neutral media. Chemical Communications, 2016, 52, 8619-8622.	4.1	36
391	Photon Up-Conversion via Epitaxial Surface-Supported Metal–Organic Framework Thin Films with Enhanced Photocurrent. ACS Applied Energy Materials, 2018, 1, 249-253.	5.1	36
392	A biomimetic approach to artificial photosynthesis: Ru(II)–polypyridine photo-sensitisers linked to tyrosine and manganese electron donors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 2145-2160.	3.9	35
393	Light-Driven Tyrosine Radical Formation in a Rutheniumâ^'Tyrosine Complex Attached to Nanoparticle TiO2. Inorganic Chemistry, 2002, 41, 6258-6266.	4.0	35
394	Parallelâ€connected monolithic dyeâ€sensitised solar modules. Progress in Photovoltaics: Research and Applications, 2010, 18, 340-345.	8.1	35
395	A new type of organic sensitizers with pyridine-N-oxide as the anchoring group for dye-sensitized solar cells. RSC Advances, 2013, 3, 13677.	3.6	35
396	Efficient Panchromatic Organic Sensitizers with Dihydrothiazole Derivative as π-Bridge for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 10960-10965.	8.0	35

#	Article	IF	CITATIONS
397	Visible-light-driven selective oxidation of benzyl alcohol and thioanisole by molecular ruthenium catalyst modified hematite. Chemical Communications, 2016, 52, 9711-9714.	4.1	35
398	High performance solid-state dye-sensitized solar cells based on organic blue-colored dyes. Journal of Materials Chemistry A, 2017, 5, 1242-1247.	10.3	35
399	Efficient BiVO ₄ Photoanodes by Postsynthetic Treatment: Remarkable Improvements in Photoelectrochemical Performance from Facile Borate Modification. Angewandte Chemie, 2019, 131, 19203-19209.	2.0	35
400	Advancing Proton Exchange Membrane Electrolyzers with Molecular Catalysts. Joule, 2020, 4, 1408-1444.	24.0	35
401	Promoting the Fe(VI) active species generation by structural and electronic modulation of efficient iron oxide based water oxidation catalyst without Ni or Co. Nano Energy, 2020, 72, 104656.	16.0	35
402	Biomimetic Model for a Photosynthetic Reaction Center: A Porphyrin with a Covalently Linked, Redox-Active Crown Ether. Angewandte Chemie International Edition in English, 1994, 33, 2318-2320.	4.4	34
403	Intramolecular charge separation in a hydrogen bonded tyrosine–ruthenium(ii)–naphthalene diimide triad. Chemical Communications, 2004, , 194-195.	4.1	34
404	Synthesis, structures and electrochemical properties of hydroxyl- and pyridyl-functionalized diiron azadithiolate complexes. Polyhedron, 2007, 26, 904-910.	2.2	34
405	Ru complexes containing pyridine dicarboxylate ligands: electronic effects on their catalytic activity toward wateroxidation. Faraday Discussions, 2012, 155, 267-275.	3.2	34
406	Enhanced vapor bubble condensation and collapse with ultrasonic vibration. Experimental Thermal and Fluid Science, 2016, 70, 115-124.	2.7	34
407	Rearranging from 6- to 7-coordination initiates the catalytic activity: An EPR study on a Ru-bda water oxidation catalyst. Coordination Chemistry Reviews, 2017, 346, 206-215.	18.8	34
408	Molecular Engineering of Triphenylamine-Based Non-Fullerene Electron-Transport Materials for Efficient Rigid and Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 38970-38977.	8.0	34
409	Synthesis of an Amino-Functionalized Model of the Fe-Only Hydrogenase Active Site. Chemistry - A European Journal, 2003, 9, 557-560.	3.3	33
410	Synthesis of phthalocyanines with two carboxylic acid groups and their utilization in solar cells based on nano-structured TiO ₂ . Journal of Porphyrins and Phthalocyanines, 2004, 08, 1228-1235.	0.8	33
411	A Doubleâ€Band Tandem Organic Dyeâ€sensitized Solar Cell with an Efficiency of 11.5 %. ChemSusChem, 2011, 4, 609-612.	6.8	33
412	Synthesis and Catalytic Water Oxidation Activities of Ruthenium Complexes Containing Neutral Ligands. Chemistry - A European Journal, 2011, 17, 9520-9528.	3.3	33
413	Highly efficient photocatalytic reduction of CO2 and H2O to CO and H2 with a cobalt bipyridyl complex. Journal of Energy Chemistry, 2018, 27, 502-506.	12.9	33
414	In‣itu Generated CsPbBr ₃ Nanocrystals on Oâ€Defective WO ₃ for Photocatalytic CO ₂ Reduction. ChemSusChem, 2022, 15, .	6.8	33

#	Article	IF	CITATIONS
415	Ruthenium phthalocyanines with axial carboxylate ligands: Synthesis and function in solar cells based on nanocrystalline TiO ₂ . Journal of Porphyrins and Phthalocyanines, 2002, 06, 217-224.	0.8	32
416	Selective binding of cucurbit[7]uril and β-cyclodextrin with a redox-active molecular triad Ru(bpy)3–MV2+–naphthol. Chemical Communications, 2007, , 4734.	4.1	32
417	Phosphane and Phosphite Unsymmetrically Disubstituted Diiron Complexes Related to the Fe-Only Hydrogenase Active Site. European Journal of Inorganic Chemistry, 2007, 2007, 3718-3727.	2.0	32
418	Preparation, characteristics and crystal structures of novel N-heterocyclic carbene substituted furan- and pyridine-containing azadithiolate Fe–S complexes. Polyhedron, 2007, 26, 1499-1504.	2.2	32
419	Preparation and structure of an enantiomeric water-bridged dinuclear indium complex containing two homochiral N atoms and its performance as an initiator in polymerization of rac-lactide. Inorganic Chemistry Communication, 2010, 13, 968-971.	3.9	32
420	Efficient organic dye sensitized solar cells based on modified sulfide/polysulfide electrolyte. Journal of Materials Chemistry, 2011, 21, 5573.	6.7	32
421	The mechanism of hydrogen evolution in Cu(bztpen)-catalysed water reduction: a DFT study. Dalton Transactions, 2015, 44, 9736-9739.	3.3	32
422	A closer mimic of the oxygen evolution complex of photosystem II. Science, 2015, 348, 635-636.	12.6	32
423	Efficient perovskite solar cells employing a solution-processable copper phthalocyanine as a hole-transporting material. Science China Chemistry, 2017, 60, 423-430.	8.2	32
424	Temperature dependence of electrocatalytic water oxidation: a triple device model with a photothermal collector and photovoltaic cell coupled to an electrolyzer. Faraday Discussions, 2017, 198, 169-179.	3.2	32
425	Regulating *OCHO Intermediate as Rateâ€Determining Step of Defective Oxynitride Nanosheets Enabling Robust CO ₂ Electroreduction. Advanced Energy Materials, 2022, 12, .	19.5	32
426	Preparation and structures of 6- and 7-coordinate salen-type zirconium complexes and their catalytic properties for oligomerization of ethylene. Journal of Organometallic Chemistry, 2005, 690, 3929-3936.	1.8	31
427	Synthesis, structures and electrochemical properties of amino-derivatives of diiron azadithiolates as active site models of Fe-only hydrogenase. Inorganica Chimica Acta, 2006, 359, 1071-1080.	2.4	31
428	Intra- and intermolecular interaction ECL study of novel ruthenium tris-bipyridyl complexes with different amine reductants. Dalton Transactions, 2009, , 7969.	3.3	31
429	Multielectronâ€Transfer Templates via Consecutive Twoâ€Electron Transformations: Iron–Sulfur Complexes Relevant to Biological Enzymes. Chemistry - A European Journal, 2012, 18, 13968-13973.	3.3	31
430	Tetranuclear Iron Complexes Bearing Benzenetetrathiolate Bridges as Four-Electron Transformation Templates and Their Electrocatalytic Properties for Proton Reduction. Inorganic Chemistry, 2013, 52, 1798-1806.	4.0	31
431	Effect of rolling motion on single-phase laminar flow resistance of forced circulation with different pump head. Annals of Nuclear Energy, 2013, 54, 141-148.	1.8	31
432	Electronic and Structural Effects of Inner Sphere Coordination of Chloride to a Homoleptic Copper(II) Diimine Complex. Inorganic Chemistry, 2018, 57, 4556-4562.	4.0	31

#	Article	IF	CITATIONS
433	Efficient and Stable Dye-Sensitized Solar Cells Based on a Tetradentate Copper(II/I) Redox Mediator. ACS Applied Materials & Interfaces, 2018, 10, 30409-30416.	8.0	31
434	Nickel-selenide templated binary metal–organic frameworks for efficient water oxidation. Journal of Materials Chemistry A, 2020, 8, 16908-16912.	10.3	31
435	Pyreneâ€Based Dopantâ€Free Holeâ€Transport Polymers with Fluorineâ€Induced Favorable Molecular Stacking Enable Efficient Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	31
436	Asymmetric epoxidation of styrene and chromenes catalysed by chiral (salen)Mn(III) complexes with a pyrrolidine backbone. Journal of Catalysis, 2006, 237, 248-254.	6.2	30
437	An azadithiolate bridged Fe2S2 complex as active site model of FeFe-hydrogenase covalently linked to a Re(CO)3(bpy)(py) photosensitizer aiming for light-driven hydrogen production. Comptes Rendus Chimie, 2008, 11, 915-921.	0.5	30
438	Molecular Design to Improve the Performance of Donor–π Acceptor Nearâ€IR Organic Dye‣ensitized Solar Cells. ChemSusChem, 2011, 4, 1601-1605.	6.8	30
439	Pendant amine bases speed up proton transfers to metals by splitting the barriers. Chemical Communications, 2012, 48, 4450.	4.1	30
440	Highly efficient iso-quinoline cationic organic dyes without vinyl groups for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 2441.	10.3	30
441	Characteristics of slug flow in a vertical narrow rectangular channel. Experimental Thermal and Fluid Science, 2014, 53, 1-16.	2.7	30
442	A nonheme manganese(<scp>iv</scp>)–oxo species generated in photocatalytic reaction using water as an oxygen source. Chemical Communications, 2015, 51, 4013-4016.	4.1	30
443	Effect of liquid subcooling on acoustic characteristics during the condensation process of vapor bubbles in a subcooled pool. Nuclear Engineering and Design, 2015, 293, 492-502.	1.7	30
444	Orienting Active Crystal Planes of New Class Lacunaris Fe ₂ PO ₅ Polyhedrons for Robust Water Oxidation in Alkaline and Neutral Media. Advanced Functional Materials, 2018, 28, 1801397.	14.9	30
445	Homogeneous Electrochemical Water Oxidation at Neutral pH by Waterâ€Soluble Ni ^{II} Complexes Bearing Redox Nonâ€innocent Tetraamido Macrocyclic Ligands. ChemSusChem, 2020, 13, 3277-3282.	6.8	30
446	Synthesis, Redox Properties, and EPR Spectroscopy of Manganese(III) Complexes of the Ligand N,N-Bis(2-hydroxybenzyl)-Nâ€2-2-hydroxybenzylidene-1,2-diaminoethane: Formation of Mononuclear, Dinuclear, and Even Higher Nuclearity Complexes. Chemistry - A European Journal, 2002, 8, 3757.	3.3	29
447	Bidentate Phosphine Ligand Based Fe2S2-Containing Macromolecules:  Synthesis, Characterization, and Catalytic Electrochemical Hydrogen Production. Inorganic Chemistry, 2006, 45, 9169-9171.	4.0	29
448	Electrogenerated Chemiluminescence of a Series of Donorâ^'Acceptor Molecules and X-ray Crystallographic Evidence for the Reaction Mechanisms. Journal of Physical Chemistry C, 2007, 111, 9595-9602.	3.1	29
449	New Organic Dyes with a Phenanthrenequinone Derivative as the π-Conjugated Bridge for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 12936-12941.	3.1	29
450	Perovskite Hydroxide CoSn(OH) ₆ Nanocubes for Efficient Photoreduction of CO ₂ to CO. ACS Sustainable Chemistry and Engineering, 2018, 6, 781-786.	6.7	29

#	Article	IF	CITATIONS
451	Iron–Salen Complex and Co ²⁺ Ionâ€Derived Cobalt–Iron Hydroxide/Carbon Nanohybrid as an Efficient Oxygen Evolution Electrocatalyst. Advanced Science, 2019, 6, 1900117.	11.2	29
452	A crosslinked polymer as dopant-free hole-transport material for efficient n-i-p type perovskite solar cells. Journal of Energy Chemistry, 2021, 55, 211-218.	12.9	29
453	Great Framework Variation of Polymers in the Manganese(II) Maleate/α,α′-Diimine System: Syntheses, Structures, and Magneto-Structural Correlation. European Journal of Inorganic Chemistry, 2003, 2003, 2872-2879.	2.0	28
454	Stepwise Charge Separation from a Rutheniumâ^'Tyrosine Complex to a Nanocrystalline TiO2Film. Journal of Physical Chemistry B, 2004, 108, 12904-12910.	2.6	28
455	Synthesis, characterization and some properties of amide-linked porphyrin–ruthenium(II) tris(bipyridine) complexes. Tetrahedron, 2005, 61, 5655-5662.	1.9	28
456	Redox-induced partner radical formation and its dynamic balance with radical dimer in cucurbit[8]uril. Physical Chemistry Chemical Physics, 2009, 11, 11134.	2.8	28
457	Solvent-free ionic liquid electrolytes without elemental iodine for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 11592.	2.8	28
458	Novel organic dyes with anchoring group of quinoxaline-2, 3-diol and the application in dye-sensitized solar cells. Dyes and Pigments, 2015, 113, 581-587.	3.7	28
459	Visibleâ€Lightâ€Driven Water Oxidation on a Photoanode by Supramolecular Assembly of Photosensitizer and Catalyst. ChemPlusChem, 2016, 81, 1056-1059.	2.8	28
460	A Perylenediimide Tetramerâ€Based 3D Electron Transport Material for Efficient Planar Perovskite Solar Cell. Solar Rrl, 2017, 1, 1700046.	5.8	28
461	Dye-sensitized LaFeO ₃ photocathode for solar-driven H ₂ generation. Chemical Communications, 2019, 55, 12940-12943.	4.1	28
462	Electroless Plating of NiFeP Alloy on the Surface of Silicon Photoanode for Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 11479-11488.	8.0	28
463	Microbubble emission boiling in scbcooled pool boiling and the role of Marangoni convection in its formation. Experimental Thermal and Fluid Science, 2013, 50, 97-106.	2.7	27
464	Effects of noncondensable gas and ultrasonic vibration on vapor bubble condensing and collapsing. Experimental Thermal and Fluid Science, 2015, 61, 210-220.	2.7	27
465	Photocatalytic H ₂ production using a hybrid assembly of an [FeFe]-hydrogenase model and CdSe quantum dot linked through a thiolato-functionalized cyclodextrin. Faraday Discussions, 2017, 198, 197-209.	3.2	27
466	High-efficiency perovskite solar cells employing a conjugated donor–acceptor co-polymer as a hole-transporting material. RSC Advances, 2017, 7, 27189-27197.	3.6	27
467	Fine-Tuning by Triple Bond of Carbazole Derivative Dyes to Obtain High Efficiency for Dye-Sensitized Solar Cells with Copper Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 46397-46405.	8.0	27
468	An Unusual Cyclization in a Bis(cysteinyl-S) Diiron Complex Related to the Active Site of Fe-Only Hydrogenases. Angewandte Chemie - International Edition, 2004, 43, 3571-3574.	13.8	26

#	Article	IF	CITATIONS
469	ECL performance of ruthenium tris-bipyridyl complexes covalently linked with phenothiazine through different bridge. Dalton Transactions, 2010, 39, 8626.	3.3	26
470	Axial anchoring designed silicon–porphyrin sensitizers for efficient dye-sensitized solar cells. Chemical Communications, 2013, 49, 11785.	4.1	26
471	Efficient Organic Dye‣ensitized Solar Cells: Molecular Engineering of Donor–Acceptor–Acceptor cationic dyes. ChemSusChem, 2013, 6, 2322-2329.	6.8	26
472	Dipicolinic acid: a strong anchoring group with tunable redox and spectral behavior for stable dye-sensitized solar cells. Chemical Communications, 2015, 51, 3858-3861.	4.1	26
473	Enhanced Photocatalytic Hydrogen Production by Adsorption of an [FeFe]â€Hydrogenase Subunit Mimic on Selfâ€Assembled Membranes. European Journal of Inorganic Chemistry, 2016, 2016, 554-560.	2.0	26
474	Hollow Iron–Vanadium Composite Spheres: A Highly Efficient Ironâ€Based Water Oxidation Electrocatalyst without the Need for Nickel or Cobalt. Angewandte Chemie, 2017, 129, 3337-3341.	2.0	26
475	Pushing the Envelope: Achieving an Openâ€Circuit Voltage of 1.18 V for Unalloyed MAPbI ₃ Perovskite Solar Cells of a Planar Architecture. Advanced Functional Materials, 2018, 28, 1801237.	14.9	26
476	Ultrafast spectroscopy reveals singlet fission, ionization and excimer formation in perylene film. Scientific Reports, 2021, 11, 5220.	3.3	26
477	Two-Dimensional Defective Boron-Doped Niobic Acid Nanosheets for Robust Nitrogen Photofixation. ACS Nano, 2021, 15, 17820-17830.	14.6	26
478	Synthesis and characterization of carboxy-functionalized diiron model complexes of [FeFe]-hydrogenases: Decarboxylation of Ph2PCH2COOH promoted by a diiron azadithiolate complex. Journal of Organometallic Chemistry, 2009, 694, 2309-2314.	1.8	25
479	Effect of Electrolyte Composition on Electron Injection and Dye Regeneration Dynamics in Complete Organic Dye Sensitized Solar Cells Probed by Time-Resolved Laser Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 26227-26238.	3.1	25
480	Frictional resistance of adiabatic two-phase flow in narrow rectangular duct under rolling conditions. Annals of Nuclear Energy, 2013, 53, 109-119.	1.8	25
481	Improving the Photocurrent in Quantum-Dot-Sensitized Solar Cells by Employing Alloy PbxCd1â^'xS Quantum Dots as Photosensitizers. Nanomaterials, 2016, 6, 97.	4.1	25
482	Water Oxidation Initiated by In Situ Dimerization of the Molecular Ru(pdc) Catalyst. ACS Catalysis, 2018, 8, 4375-4382.	11.2	25
483	Exploring the Optical and Electrochemical Properties of Homoleptic versus Heteroleptic Diimine Copper(I) Complexes. Inorganic Chemistry, 2019, 58, 12167-12177.	4.0	25
484	Hierarchical micro-reactor as electrodes for water splitting by metal rod tipped carbon nanocapsule self-assembly in carbonized wood. Applied Catalysis B: Environmental, 2020, 264, 118536.	20.2	25
485	Selective Electrochemical Alkaline Seawater Oxidation Catalyzed by Cobalt Carbonate Hydroxide Nanorod Arrays with Sequential Proton-Electron Transfer Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 905-913.	6.7	25
486	Synthesis, structural characterization and magnetic properties of 2-pyrazinecarboxylate manganese compounds [Mn(pyz)2(H2O)4] and [MnCl(pyz)(H2O)]n (pyz=2-pyrazinecarboxylate). Inorganica Chimica Acta, 2003, 353, 284-291.	2.4	24

#	Article	IF	CITATIONS
487	Influence of substituents in the salicylaldehydeâ€derived Schiff bases on vanadiumâ€catalyzed asymmetric oxidation of sulfides. Applied Organometallic Chemistry, 2008, 22, 253-257.	3.5	24
488	Tetrathiafulvalene as a one-electron iodine-free organic redox mediator in electrolytes for dye-sensitized solar cells. RSC Advances, 2012, 2, 1083-1087.	3.6	24
489	Redox Reactions of [FeFe]-Hydrogenase Models Containing an Internal Amine and a Pendant Phosphine. Inorganic Chemistry, 2014, 53, 1555-1561.	4.0	24
490	Application of Small Molecule Donor Materials Based on Phenothiazine Core Unit in Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16851-16855.	3.1	24
491	Assembling Supramolecular Dyeâ€5ensitized Photoelectrochemical Cells for Water Splitting. ChemSusChem, 2015, 8, 3992-3995.	6.8	24
492	Can aliphatic anchoring groups be utilised with dyes for p-type dye sensitized solar cells?. Dalton Transactions, 2016, 45, 7708-7719.	3.3	24
493	Improving energy transfer efficiency of dye-sensitized solar cell by fine tuning of dye planarity. Solar Energy, 2019, 187, 274-280.	6.1	24
494	Enrichment of glycopeptides using environmentally friendly wood materials. Green Chemistry, 2020, 22, 5666-5676.	9.0	24
495	Organic Salts as p-Type Dopants for Efficient LiTFSI-Free Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 33751-33758.	8.0	24
496	Single crystal structure and opto-electronic properties of oxidized Spiro-OMeTAD. Chemical Communications, 2020, 56, 1589-1592.	4.1	24
497	Stable Dyeâ€ S ensitized Solar Cells Based on Copper(II/I) Redox Mediators Bearing a Pentadentate Ligand. Angewandte Chemie - International Edition, 2021, 60, 16156-16163.	13.8	24
498	Excited-state properties of trans-1-(9-anthryl)-2-(4-R-phenyl)ethylenes with electron-donating and -accepting substituents [R = N(CH3)2, OCH3, CH3, Br, CN, and NO2]. The Journal of Physical Chemistry, 1993, 97, 11186-11193.	2.9	23
499	Novel biomimetic models for photosynthesis: Porphyrins covalently linked to redox-active crown ether quinones. Tetrahedron, 1995, 51, 3535-3548.	1.9	23
500	Synthesis of a Ru(bpy)3-type complex linked to a free terpyridine ligand and its use for preparation of polynuclear bimetallic complexes. Catalysis Today, 2004, 98, 529-536.	4.4	23
501	Asymmetric oxidation of sulfides catalyzed by chiral (salen)Mn(III) complexes with a pyrrolidine backbone. Applied Organometallic Chemistry, 2006, 20, 830-834.	3.5	23
502	Selective Positioning of CB[8] on Two Linked Viologens and Electrochemically Driven Movement of the Host Molecule. European Journal of Organic Chemistry, 2009, 2009, 1163-1172.	2.4	23
503	Asymmetric oxidation of sulfides with hydrogen peroxide catalyzed by a vanadium complex of a new chiral NOO-ligand. Catalysis Communications, 2009, 11, 294-297.	3.3	23
504	Tuning band structures of dyes for dye-sensitized solar cells: effect of different π-bridges on the performance of cells. RSC Advances, 2013, 3, 15734.	3.6	23

#	Article	IF	CITATIONS
505	Effects of void fraction correlations on pressure gradient separation ofÂair–water two-phase flow in vertical mini rectangular ducts. Progress in Nuclear Energy, 2014, 70, 84-90.	2.9	23
506	Crystal crosslinking. Nature Chemistry, 2015, 7, 684-685.	13.6	23
507	Composite Holeâ€Transport Materials Based on a Metalâ€Organic Copper Complex and Spiroâ€OMeTAD for Efficient Perovskite Solar Cells. Solar Rrl, 2018, 2, 1700073.	5.8	23
508	Numerical investigation and comparative analysis of nanofluid cooling enhancement for TEG and TEC systems. Case Studies in Thermal Engineering, 2021, 27, 101331.	5.7	23
509	Asymmetric Oxidation of Sulfides Catalyzed by Vanadium(IV) Complexes of Dibromo- and Diiodo-Functionalized Chiral Schiff Bases. Chinese Journal of Catalysis, 2006, 27, 743-748.	14.0	22
510	Facile and highly efficient light-induced PR3/CO ligand exchange: A novel approach to the synthesis of [(μ-SCH2NnPrCH2S)Fe2(CO)4(PR3)2]. Journal of Organometallic Chemistry, 2007, 692, 1579-1583.	1.8	22
511	Interrogating the ultrafast dynamics of an efficient dye for sunlight conversion. Physical Chemistry Chemical Physics, 2010, 12, 8098.	2.8	22
512	Asymmetric oxidation of sulfides with H2O2 catalyzed by titanium complexes of Schiff bases bearing a dicumenyl salicylidenyl unit. Applied Organometallic Chemistry, 2011, 25, 325-330.	3.5	22
513	Effect of rolling motion on transient flow resistance of two-phase flow in a narrow rectangular duct. Annals of Nuclear Energy, 2014, 64, 135-143.	1.8	22
514	A novel phenoxazine-based hole transport material for efficient perovskite solar cell. Journal of Energy Chemistry, 2015, 24, 698-706.	12.9	22
515	Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor. Dalton Transactions, 2015, 44, 475-479.	3.3	22
516	A trinuclear ruthenium complex as a highly efficient molecular catalyst for water oxidation. Dalton Transactions, 2016, 45, 3814-3819.	3.3	22
517	Towards efficient and robust anodes for water splitting: Immobilization of Ru catalysts on carbon electrode and hematite by in situ polymerization. Catalysis Today, 2017, 290, 73-77.	4.4	22
518	Cobalt doped BiVO ₄ with rich oxygen vacancies for efficient photoelectrochemical water oxidation. RSC Advances, 2020, 10, 28523-28526.	3.6	22
519	Oligothiophene-2-yl-vinyl bridged mono- and binuclear ruthenium(II) tris-bipyridine complexes: Synthesis, photophysics, electrochemistry and electrogenerated chemiluminescence. Journal of Organometallic Chemistry, 2008, 693, 46-56.	1.8	21
520	Novel D–π–A type II organic sensitizers for dye sensitized solar cells. Tetrahedron Letters, 2012, 53, 3425-3428.	1.4	21
521	Phenoxazine-based panchromatic organic sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2015, 116, 58-64.	3.7	21
522	Feature of acoustic sound signals involved in vapor bubble condensation and its application in identification of condensation regimes. Chemical Engineering Science, 2015, 137, 384-397.	3.8	21

#	Article	IF	CITATIONS
523	Effects of ultrasonic waves on subcooled pool boiling on a small plain heating surface. Chemical Engineering Science, 2019, 201, 274-287.	3.8	21
524	Molybdenum and boron synergistically boosting efficient electrochemical nitrogen fixation. Nano Energy, 2020, 78, 105391.	16.0	21
525	Unveiling the light soaking effects of the CsPbI3 perovskite solar cells. Journal of Power Sources, 2020, 472, 228506.	7.8	21
526	A dendritic Sb ₂ Se ₃ /In ₂ S ₃ heterojunction nanorod array photocathode decorated with a MoS _x catalyst for efficient solar hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 23385-23394.	10.3	21
527	Surface and bulk reconstruction of CoW sulfides during pH-universal electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 11359-11369.	10.3	21
528	Synthesis and redox properties of a [<i>meso</i> -tris(4-nitrophenyl) corrolato] Mn(III) complex. Journal of Porphyrins and Phthalocyanines, 2005, 09, 379-386.	0.8	20
529	Effect on Cell Efficiency following Thermal Degradation of Dye-Sensitized Mesoporous Electrodes Using N719 and D5 Sensitizers. Journal of Physical Chemistry C, 2009, 113, 18902-18906.	3.1	20
530	Unusual partner radical trimer formation in a host complex of cucurbit[8]uril, ruthenium(ii) tris-bipyridine linked phenol and methyl viologen. Chemical Communications, 2010, 46, 463-465.	4.1	20
531	Conceptual design and analysis of a passive residual heat removal system for a 10ÂMW molten salt reactor experiment. Progress in Nuclear Energy, 2014, 70, 149-158.	2.9	20
532	Towards a Bioinspired‧ystems Approach for Solar Fuel Devices. ChemPlusChem, 2016, 81, 1024-1027.	2.8	20
533	Hierarchically Structured FeNiO _{<i>x</i>} H _{<i>y</i>} Electrocatalyst Formed by Inâ€Situ Transformation of Metal Phosphate for Efficient Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 1761-1767.	6.8	20
534	Cu ₃ P/CuO Coreâ€6hell Nanorod Arrays as Highâ€Performance Electrocatalysts for Water Oxidation. ChemElectroChem, 2018, 5, 2064-2068.	3.4	20
535	Improved performance and air stability of perovskite solar cells based on low-cost organic hole-transporting material X60 by incorporating its dicationic salt. Science China Chemistry, 2018, 61, 172-179.	8.2	20
536	Electronâ€Withdrawing Anchor Group of Sensitizer for Dyeâ€Sensitized Solar Cells, Cyanoacrylic Acid, or Benzoic Acid?. Solar Rrl, 2020, 4, 1900436.	5.8	20
537	Beyond d Orbits: Steering the Selectivity of Electrochemical CO ₂ Reduction via Hybridized sp Band of Sulfurâ€Incorporated Porous Cd Architectures with Dual Collaborative Sites. Advanced Energy Materials, 2020, 10, 2002499.	19.5	20
538	Promotion of the oxygen evolution performance of Ni-Fe layered hydroxides via the introduction of a proton-transfer mediator anion. Science China Chemistry, 2022, 65, 382-390.	8.2	20
539	Asymmetric epoxidation of styrene and chromenes catalysed by dimeric chiral (pyrrolidine) Tj ETQq1 1 0.78431	4 rgβT /Ov 4.3	erlock 10 Tf
540	Aryl-diamide bridged binuclear ruthenium (II) tris(bipyridine) complexes: Synthesis, photophysical, electrochemical and electrochemiluminescence properties. Journal of Organometallic Chemistry, 2006, 691, 4189-4195.	1.8	19

#	Article	IF	CITATIONS
541	PdCl2-catalyzed cross-coupling reaction of arylacetylene iodides with arylboronic acids to diarylacetylenes. Tetrahedron Letters, 2010, 51, 3626-3628.	1.4	19
542	Synthesis of a [3Fe2S] Cluster with Low Redox Potential from [2Fe2S] Hydrogenase Models: Electrochemical and Photochemical Generation of Hydrogen. European Journal of Inorganic Chemistry, 2011, 2011, 1100-1105.	2.0	19
543	A theoretical analysis about the effect of aspect ratio on single-phase laminar flow in rectangular ducts. Progress in Nuclear Energy, 2013, 65, 1-7.	2.9	19
544	Dye-sensitized solar cells based on hydroquinone/benzoquinone as bio-inspired redox couple with different counter electrodes. Physical Chemistry Chemical Physics, 2013, 15, 15146.	2.8	19
545	Effect of the S-to-S bridge on the redox properties and H ₂ activation performance of diiron complexes related to the [FeFe]-hydrogenase active site. Dalton Transactions, 2016, 45, 17687-17696.	3.3	19
546	Novel and Stable D–Aâ~π–A Dyes for Efficient Solid-State Dye-Sensitized Solar Cells. ACS Omega, 2017, 2, 1812-1819.	3.5	19
547	Water Splitting via Decoupled Photocatalytic Water Oxidation and Electrochemical Proton Reduction Mediated by Electronâ€Coupledâ€Proton Buffer. Chemistry - an Asian Journal, 2017, 12, 2666-2669.	3.3	19
548	Metal–Organic Framework Thin Film-Based Dye Sensitized Solar Cells with Enhanced Photocurrent. Materials, 2018, 11, 1868.	2.9	19
549	Molecular engineering of ionic type perylenediimide dimer-based electron transport materials for efficient planar perovskite solar cells. Materials Today Energy, 2018, 9, 264-270.	4.7	19
550	Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer. Journal of Alloys and Compounds, 2019, 771, 25-32.	5.5	19
551	Selective Electro-oxidation of Alcohols to the Corresponding Aldehydes in Aqueous Solution via Cu(III) Intermediates from CuO Nanorods. ACS Sustainable Chemistry and Engineering, 2021, 9, 11855-11861.	6.7	19
552	A comparative study of a polyene-diphenylaniline dye and Ru(dcbpy)2(NCS)2 in electrolyte-based and solid-state dye-sensitized solar cells. Thin Solid Films, 2008, 516, 7214-7217.	1.8	18
553	Supramolecular self-assembly of a [2Fe2S] complex with a hydrophilic phosphine ligand. CrystEngComm, 2008, 10, 267-269.	2.6	18
554	Nickel Complex with Internal Bases as Efficient Molecular Catalyst for Photochemical H ₂ Production. ChemSusChem, 2014, 7, 2889-2897.	6.8	18
555	Artificial photosynthesis: photosensitizer/catalyst supramolecular assemblies for light driven water oxidation. Faraday Discussions, 2014, 176, 225-232.	3.2	18
556	Flow fluctuation behaviors of single-phase forced circulation under rolling conditions. Ocean Engineering, 2014, 82, 115-122.	4.3	18
557	Copper Oxide Film In-situ Electrodeposited from Cu(II) Complex as Highly Efficient Catalyst for Water Oxidation. Electrochimica Acta, 2017, 230, 501-507.	5.2	18
558	Electrocatalytic Water Oxidation Promoted by 3 D Nanoarchitectured Turbostratic δâ€MnO _{<i>x</i>} on Carbon Nanotubes. ChemSusChem, 2017, 10, 4472-4478.	6.8	18

#	Article	IF	CITATIONS
559	Ionic liquid doped organic hole transporting material for efficient and stable perovskite solar cells. Physica B: Condensed Matter, 2020, 586, 412124.	2.7	18
560	A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting. Angewandte Chemie, 2021, 133, 2004-2013.	2.0	18
561	Salen-type zirconium complexes with a labile coordination site and a robust skeleton: crystal structure of [(t-Bu4-salen)ZrCl2(H2O)]. Journal of Organometallic Chemistry, 2004, 689, 1212-1217.	1.8	17
562	Preparation, characterization and electrochemistry of an iron-only hydrogenase active site model covalently linked to a ruthenium tris(bipyridine) photosensitizer. Journal of Coordination Chemistry, 2008, 61, 1856-1861.	2.2	17
563	Association of ruthenium complexes [Ru(bpy)3]2+ or [Ru(bpy)2(Mebpy-py)]2+ with Dawson polyanions α-[P2W18O62]6– or α2-[FelII(H2O)P2W17O61]7–. Canadian Journal of Chemistry, 2008, 86, 1034-1043.	1.1	17
564	Dye-Sensitized Photoelectrochemical Cells. , 2012, , 479-542.		17
565	Catalytic water oxidation based on Ag(<scp>i</scp>)-substituted Keggin polyoxotungstophosphate. Dalton Transactions, 2014, 43, 17406-17415.	3.3	17
566	Two Redox Couples are Better Than One: Improved Current and Fill Factor from Cobaltâ€Based Electrolytes in Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1301273.	19.5	17
567	Triphenylamine Groups Improve Blocking Behavior of Phenoxazine Dyes in Cobaltâ€Electrolyteâ€Based Dyeâ€ S ensitized Solar Cells. ChemPhysChem, 2014, 15, 3476-3483.	2.1	17
568	Comparison of local interfacial characteristics between vertical upward and downward two-phase flows using a four-sensor optical probe. International Journal of Heat and Mass Transfer, 2014, 77, 1183-1196.	4.8	17
569	Void fraction of dispersed bubbly flow in a narrow rectangular channel under rolling conditions. Progress in Nuclear Energy, 2014, 70, 256-265.	2.9	17
570	Effects of rolling on resistance characteristics of single-phase flow in aÂ3Â×Â3 rod bundle. Progress in Nuclear Energy, 2015, 78, 231-239.	2.9	17
571	Tailored design of ruthenium molecular catalysts with 2,2′-bypyridine-6,6′-dicarboxylate and pyrazole based ligands for water oxidation. Dalton Transactions, 2016, 45, 14689-14696.	3.3	17
572	Effect of Bridgehead Steric Bulk on the Intramolecular C–H Heterolysis of [FeFe]-Hydrogenase Active Site Models Containing a P ₂ N ₂ Pendant Amine Ligand. Inorganic Chemistry, 2016, 55, 411-418.	4.0	17
573	Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes. Solar Energy, 2017, 158, 28-33.	6.1	17
574	An experimental study on Microbubble Emission Boiling in a subcooled pool: Heat transfer characteristics and visualized presentation. Experimental Thermal and Fluid Science, 2017, 80, 40-52.	2.7	17
575	Impact of Linking Topology on the Properties of Carbazoleâ€Based Holeâ€Transport Materials and their Application in Solidâ€State Mesoscopic Solar Cells. Solar Rrl, 2019, 3, 1900196.	5.8	17
576	Sacrificial W Facilitates Selfâ€Reconstruction with Abundant Active Sites for Water Oxidation. Small, 2022, 18, e2107249.	10.0	17

#	Article	IF	CITATIONS
577	Donor–acceptor molecules containing thiophene chromophore: synthesis, spectroscopic study and electrogenerated chemiluminescence. Tetrahedron Letters, 2006, 47, 4961-4964.	1.4	16
578	Synthesis and photophysical and electrochemical properties of a binuclear Ru (bpy) ₃ - Cu (III) corrole complex. Journal of Porphyrins and Phthalocyanines, 2007, 11, 463-469.	0.8	16
579	[FeFe]-Hydrogenase active site models with relatively low reduction potentials: Diiron dithiolate complexes containing rigid bridges. Journal of Inorganic Biochemistry, 2008, 102, 952-959.	3.5	16
580	Light driven formation of a supramolecular system with three CB[8]s locked between redox-active Ru(bpy)3 complexes. Organic and Biomolecular Chemistry, 2009, 7, 3605.	2.8	16
581	Pure Organic Redox Couple for Quantumâ€Dotâ€Sensitized Solar Cells. Chemistry - A European Journal, 2011, 17, 6330-6333.	3.3	16
582	Synthesis and ECL performance of highly efficient bimetallic ruthenium tris-bipyridyl complexes. Dalton Transactions, 2012, 41, 12434.	3.3	16
583	Photochemical hydrogen production with molecular devices comprising a zinc porphyrin and a cobaloxime catalyst. Science China Chemistry, 2012, 55, 1274-1282.	8.2	16
584	Experimental study of interfacial parameter distributions in upward bubbly flow under vertical and inclined conditions. Experimental Thermal and Fluid Science, 2013, 47, 117-125.	2.7	16
585	Local interfacial parameter distribution for two-phase flow under rolling conditions using a four-sensor optical probe. Annals of Nuclear Energy, 2014, 66, 124-132.	1.8	16
586	Switching O O bond formation mechanism between WNA and I2M pathways by modifying the Ru-bda backbone ligands of water-oxidation catalysts. Journal of Energy Chemistry, 2021, 54, 815-821.	12.9	16
587	Isolation and Identification of Pseudo Seven-Coordinate Ru(III) Intermediate Completing the Catalytic Cycle of Ru-bda Type of Water Oxidation Catalysts. CCS Chemistry, 2022, 4, 2481-2490.	7.8	16
588	Trans → cis photoisomerization of 1-(9-anthryl)-2-(4-R-phenyl)ethylene, R: CH3 and OCH3. Chemical Physics Letters, 1993, 208, 43-47.	2.6	15
589	Mimicking primary processes in photosynthesis photochemistry of covalently linked porphyrin quinones studied by EPR spectroscopy. Solar Energy Materials and Solar Cells, 1995, 38, 91-110.	6.2	15
590	Artificial photosynthesis: Towards functional mimics of photosystem II?. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 193-199.	1.0	15
591	Synthesis and Photophysical and Electrochemical Study of Tyrosine Covalently Linked to High-Valent Copper(III) and Manganese(IV) Complexes. Helvetica Chimica Acta, 2007, 90, 553-561.	1.6	15
592	Synthesis and DNA photocleavage study of Ru(bpy)32+-(CH2)n-MV2+ complexes. Dalton Transactions, 2010, 39, 4411.	3.3	15
593	Isolated Supramolecular [Ru(bpy) ₃]–Viologen–[Ru(bpy) ₃] Complexes with Trapped CB[7,8] and Photoinduced Electronâ€Transfer Study in Nonaqueous Solution. Chemistry - A European Journal, 2011, 17, 11604-11612.	3.3	15
594	The influence of a S-to-S bridge in diiron dithiolate models on the oxidation reaction: a mimic of the Hairox state of [FeFe]-hydrogenases. Chemical Communications, 2014, 50, 9255-9258.	4.1	15

#	Article	IF	CITATIONS
595	Molecular engineering of small molecules donor materials based on phenoxazine core unit for solution-processed organic solar cells. Journal of Materials Chemistry A, 2014, 2, 10465-10469.	10.3	15
596	Construct Polyoxometalate Frameworks through Covalent Bonds. Inorganic Chemistry, 2015, 54, 8699-8704.	4.0	15
597	Model of bubble velocity vector measurement in upward and downward bubbly two-phase flows using a four-sensor optical probe. Progress in Nuclear Energy, 2015, 78, 110-120.	2.9	15
598	Experimental and Theoretical Investigation of the Function of 4- <i>tert</i> -Butyl Pyridine for Interface Energy Level Adjustment in Efficient Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 11572-11579.	8.0	15
599	Highly transparent nickel and iron sulfide on nitrogen-doped carbon films as counter electrodes for bifacial quantum dot sensitized solar cells. Solar Energy, 2019, 193, 766-773.	6.1	15
600	Hierarchical CoS ₂ /Ni ₃ S ₂ /CoNiO _x nanorods with favorable stability at 1 A cm ^{â^2} for electrocatalytic water oxidation. Chemical Communications, 2019, 55, 1564-1567.	4.1	15
601	Singlet fission from upper excited singlet states and polaron formation in rubrene film. RSC Advances, 2021, 11, 4639-4645.	3.6	15
602	Hydrophobic/Hydrophilic Directionality Affects the Mechanism of Ru-Catalyzed Water Oxidation Reaction. ACS Catalysis, 2020, 10, 13364-13370.	11.2	15
603	WO ₃ Nanosheet-Supported IrW Alloy for High-Performance Acidic Overall Water Splitting with Low Ir Loading. ACS Applied Energy Materials, 2022, 5, 970-980.	5.1	15
604	Reversible Structural Isomerization of Nature's Water Oxidation Catalyst Prior to O–O Bond Formation. Journal of the American Chemical Society, 2022, 144, 11736-11747.	13.7	15
605	Mimicking photosystem II reactions in artificial photosynthesis: Ru(II)-polypyridine photosensitisers linked to tyrosine and manganese electron donors. Catalysis Today, 2000, 58, 57-69.	4.4	14
606	Synthesis, protonation and electrochemical properties of trinuclear NiFe2 complexes Fe2(CO)6(I¼3-S)2[Ni(Ph2PCH2)2NR] (R=n-Bu, Ph) with an internal pendant nitrogen base as a proton relay. Inorganica Chimica Acta, 2009, 362, 372-376.	2.4	14
607	Molecular Design of Dâ€ï€â€A Type II Organic Sensitizers for Dye Sensitized Solar Cells. Chinese Journal of Chemistry, 2012, 30, 2315-2321.	4.9	14
608	Efficient Organic Sensitizers with Pyridineâ€ <i>N</i> â€oxide as an Anchor Group for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2014, 7, 2640-2646.	6.8	14
609	Water oxidation catalyzed by a charge-neutral mononuclear ruthenium(<scp>iii</scp>) complex. Dalton Transactions, 2017, 46, 1304-1310.	3.3	14
610	Energy‣oss Reduction as a Strategy to Improve the Efficiency of Dye‧ensitized Solar Cells. Solar Rrl, 2019, 3, 1900253.	5.8	14
611	Amorphous WO ₃ induced lattice distortion for a low-cost and high-efficient electrocatalyst for overall water splitting in acid. Sustainable Energy and Fuels, 2020, 4, 1712-1722.	4.9	14
612	Molecular Functionalization of NiO Nanocatalyst for Enhanced Water Oxidation by Electronic Structure Engineering. ChemSusChem, 2020, 13, 5901-5909.	6.8	14

#	Article	IF	CITATIONS
613	Side-chain engineering of PEDOT derivatives as dopant-free hole-transporting materials for efficient and stable n–i–p structured perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 9236-9242.	5.5	14
614	Copper Selenide–Derived Copper Oxide Nanoplates as a Durable and Efficient Electrocatalyst for Oxygen Evolution Reaction. Energy Technology, 2020, 8, 2000142.	3.8	14
615	Determination of EDTA species in water by square-wave voltammetry using a chitosan-coated glassy carbon electrode. Water Research, 2003, 37, 4270-4274.	11.3	13
616	A novel ruthenium(II) tris(bipyridine)–zinc porphyrin–rhenium carbonyl triad: synthesis and optical properties. Tetrahedron, 2006, 62, 3674-3680.	1.9	13
617	Experimental and theoretical analysis of bubble rising velocity in a 3×3 rolling rod bundle under stagnant condition. Annals of Nuclear Energy, 2014, 72, 471-481.	1.8	13
618	Design of a natural draft air-cooled condenser and its heat transfer characteristics in the passive residual heat removal system for 10ÂMW molten salt reactor experiment. Applied Thermal Engineering, 2015, 76, 423-434.	6.0	13
619	Silicon Compound Decorated Photoanode for Performance Enhanced Visible Light Driven Water Splitting. Electrochimica Acta, 2016, 215, 682-688.	5.2	13
620	A Cobaltâ€Based Film for Highly Efficient Electrocatalytic Water Oxidation in Neutral Aqueous Solution. ChemCatChem, 2016, 8, 2757-2760.	3.7	13
621	Selective CO Production by Photoelectrochemical CO ₂ Reduction in an Aqueous Solution with Cobalt-Based Molecular Redox Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 41644-41648.	8.0	13
622	Ultrafast Tuning of Various Photochemical Pathways in Perylene–TCNQ Charge-Transfer Crystals. Journal of Physical Chemistry C, 2020, 124, 13894-13901.	3.1	13
623	Offâ€Set Interactions of Ruthenium–bda Type Catalysts for Promoting Waterâ€Splitting Performance. Angewandte Chemie - International Edition, 2021, 60, 14504-14511.	13.8	13
624	Enhancement of Singlet Fission Yield by Hindering Excimer Formation in Perylene Film. Journal of Physical Chemistry C, 2022, 126, 396-403.	3.1	13
625	Synthesis, electrochemical, and photophysical studies of multicomponent systems based on porphyrin and ruthenium(II) polypyridine complexes. Tetrahedron, 2007, 63, 9195-9205.	1.9	12
626	Slug behavior and pressure drop of adiabatic slug flow in a narrow rectangular duct under inclined conditions. Annals of Nuclear Energy, 2014, 64, 21-31.	1.8	12
627	Investigation of the interfacial parameter distribution in a bubbly flow in a narrow rectangular channel under inclined and rolling conditions. Progress in Nuclear Energy, 2014, 73, 64-74.	2.9	12
628	Peripheral Hole Acceptor Moieties on an Organic Dye Improve Dye‣ensitized Solar Cell Performance. Advanced Science, 2015, 2, 1500174.	11.2	12
629	In Situ Formation of Efficient Cobaltâ€Based Water Oxidation Catalysts from Co ²⁺ â€Containing Tungstate and Molybdate Solutions. Chemistry - an Asian Journal, 2015, 10, 2228-2233.	3.3	12
630	Efficient molecular ruthenium catalysts containing anionic ligands for water oxidation. Dalton Transactions, 2016, 45, 18459-18464.	3.3	12

#	Article	IF	CITATIONS
631	Catalytic Systems for Water Splitting. ChemPlusChem, 2016, 81, 1017-1019.	2.8	12
632	Investigation on Formation Characteristics of Aerosol Particles during Wet Ammonia Desulfurization Process. Energy & Fuels, 2017, 31, 8374-8382.	5.1	12
633	Enhanced S ₂ Fluorescence from a Free-Base Tetraphenylporphyrin Surface-Mounted Metal Organic Framework. Journal of Physical Chemistry C, 2018, 122, 23321-23328.	3.1	12
634	Exploring Overall Photoelectric Applications by Organic Materials Containing Symmetric Donor Isomers. Chemistry of Materials, 2019, 31, 8810-8819.	6.7	12
635	Fine-tuning the coordination atoms of copper redox mediators: an effective strategy for boosting the photovoltage of dye-sensitized solar cells. Journal of Materials Chemistry A, 2019, 7, 12808-12814.	10.3	12
636	Boosting Electrocatalytic Water Oxidation by Creating Defects and Latticeâ€Oxygen Active Sites on Niâ€Fe Nanosheets. ChemSusChem, 2020, 13, 5067-5072.	6.8	12
637	Remarkable synergy of borate and interfacial hole transporter on BiVO ₄ photoanodes for photoelectrochemical water oxidation. Materials Advances, 2021, 2, 4323-4332.	5.4	12
638	Biomimetische Modelle fÃ1⁄4r das photosynthetische Reaktionszentrum: ein kovalent mit einem redoxaktiven Kronenether verknÃ1⁄4pftes Porphyrin. Angewandte Chemie, 1994, 106, 2396-2399.	2.0	11
639	Time-resolved EPR studies of covalently linked porphyrin—crown ether—quinones, dissolved in liquid crystals. Magnetic Resonance in Chemistry, 1995, 33, S28-S33.	1.9	11
640	A new, dinuclear high spin manganese(III) complex with bridging phenoxy and methoxy groups. Structure and magnetic properties. Inorganic Chemistry Communication, 2006, 9, 1195-1198.	3.9	11
641	Synthesis and characterization of some new mononuclear ruthenium complexes containing 4-(un)substituted dipyridylpyrazole ligands. Polyhedron, 2008, 27, 1168-1176.	2.2	11
642	Artificial photosynthesis: A two-electrode photoelectrochemical cell for light driven water oxidation with molecular components. Electrochimica Acta, 2014, 149, 337-340.	5.2	11
643	Effect of Different Numbers of â^'CH ₂ – Units on the Performance of Isoquinolinium Dyes. ACS Applied Materials & Interfaces, 2014, 6, 3907-3914.	8.0	11
644	Efficiency Enhanced Colloidal Mn-Doped Type II Core/Shell ZnSe/CdS Quantum Dot Sensitized Hybrid Solar Cells. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	11
645	The Central Role of Ligand Conjugation for Properties of Coordination Complexes as Hole-Transport Materials in Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 6768-6779.	5.1	11
646	Identification of Mâ€NH 2 â€NH 2 Intermediate and Rate Determining Step for Nitrogen Reduction with Bioinspired Sulfurâ€Bonded FeW Catalyst. Angewandte Chemie, 2021, 133, 20494-20504.	2.0	11
647	Highly stable perovskite solar cells with a novel Ni-based metal organic complex as dopant-free hole-transporting material. Journal of Energy Chemistry, 2022, 65, 312-318.	12.9	11
648	Promoting Proton Transfer and Stabilizing Intermediates in Catalytic Water Oxidation via Hydrophobic Outer Sphere Interactions. Chemistry - A European Journal, 2022, 28, .	3.3	11

#	Article	IF	CITATIONS
649	Mixed-Valence Properties of an Acetate-Bridged Dinuclear Ruthenium (II,III) Complex. Journal of Physical Chemistry A, 2003, 107, 4373-4380.	2.5	10
650	Synthesis and property of a chiral salen Mn(III) complex covalently linked to an Ru(II) tris(bipyridyl) photosensitizer. Inorganic Chemistry Communication, 2005, 8, 606-609.	3.9	10
651	Axial ligand exchange reaction on ruthenium phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2005, 09, 248-255.	0.8	10
652	Influence of the built-in pyridinium salt on asymmetric epoxidation of substituted chromenes catalysed by chiral (pyrrolidine salen)Mn(III) complexes. Journal of Molecular Catalysis A, 2007, 270, 278-283.	4.8	10
653	A new class of organic dyes based on acenaphthopyrazine for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213, 152-157.	3.9	10
654	Synthesis of Tri- and Disalicylaldehydes and Their Chiral Schiff Base Compounds. Synthetic Communications, 2010, 40, 1074-1081.	2.1	10
655	Mapping the frontier electronic structures of triphenylamine based organic dyes at TiO ₂ interfaces. Physical Chemistry Chemical Physics, 2011, 13, 3534-3546.	2.8	10
656	Ruthenium sensitizer with a thienylvinylbipyridyl ligand for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 8361.	3.3	10
657	Quantum Rodâ€Sensitized Solar Cells. ChemSusChem, 2011, 4, 1741-1744.	6.8	10
658	Phenoxazine dyes in solid-state dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 239, 55-59.	3.9	10
659	Alkene Epoxidation Catalysts [Ru(pdc)(tpy)] and [Ru(pdc)(pybox)] Revisited: Revealing a Unique Ru ^{IV} â•O Structure from a Dimethyl Sulfoxide Coordinating Complex. ACS Catalysis, 2015, 5, 3966-3972.	11.2	10
660	Watching the dynamics of electrons and atoms at work in solar energy conversion. Faraday Discussions, 2015, 185, 51-68.	3.2	10
661	Visible light-driven oxygen evolution using a binuclear Ru-bda catalyst. Chinese Journal of Catalysis, 2018, 39, 446-452.	14.0	10
662	In Situ Induced Crystalline–Amorphous Heterophase Junction by K+ to Improve Photoelectrochemical Water Oxidation of BiVO4. ACS Applied Materials & Interfaces, 2021, 13, 2723-2733.	8.0	10
663	Electronic Influence of the 2,2′-Bipyridine-6,6′-dicarboxylate Ligand in Ru-Based Molecular Water Oxidation Catalysts. Inorganic Chemistry, 2021, 60, 1202-1207.	4.0	10
664	Exploration of electrocatalytic water oxidation properties of NiFe catalysts doped with nonmetallic elements (P, S, Se). International Journal of Hydrogen Energy, 2021, 46, 38992-39002.	7.1	10
665	Effect of the Ancillary Ligand on the Performance of Heteroleptic Cu(l) Diimine Complexes as Dyes in Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2022, 5, 1460-1470.	5.1	10
666	Evaluation Analysis of Prediction Methods for Two-Phase Flow Pressure Drop in Mini-Channels. , 2008, , .		9

#	Article	IF	CITATIONS
667	A Suzukiâ€type crossâ€coupling reaction of arylacetylene halides with arylboronic acids. Applied Organometallic Chemistry, 2011, 25, 514-520.	3.5	9
668	DDQ as an effective p-type dopant for the hole-transport material X1 and its application in stable solid-state dye-sensitized solar cells. Journal of Energy Chemistry, 2018, 27, 413-418.	12.9	9
669	Across the Board: Licheng Sun on the Mechanism of Oâ^'O Bond Formation in Photosystem II. ChemSusChem, 2019, 12, 3401-3404.	6.8	9
670	Triazatruxene-based sensitizers for highly efficient solid-state dye-sensitized solar cells. Solar Energy, 2020, 212, 1-5.	6.1	9
671	An organic polymer CuPPc-derived copper oxide as a highly efficient electrocatalyst for water oxidation. Chemical Communications, 2020, 56, 3797-3800.	4.1	9
672	Coordination polyhedra of eight-coordinate zirconium complexes and a network built up by crisscross ClCl contacts. Transition Metal Chemistry, 2005, 30, 517-522.	1.4	8
673	Practical Synthesis of New βâ€Diketoneâ€Connected Bipyridine and Its Conversion to Pyrazoleâ€Centered Bipyridine Ligand. Synthetic Communications, 2007, 37, 3393-3402.	2.1	8
674	Electrogenerated chemiluminescence of benzo 15â€crownâ€5 derivatives. Journal of Physical Organic Chemistry, 2009, 22, 1-8.	1.9	8
675	Protophilicity, electrochemical property, and desulfurization of diiron dithiolate complexes containing a functionalized C2 bridge with two vicinal basic sites. Polyhedron, 2009, 28, 1138-1144.	2.2	8
676	Photo-induced electron transfer study of D-Ï€-A sensitizers with different type of anchoring groups for dye-sensitized solar cells. RSC Advances, 2012, 2, 6011.	3.6	8
677	Molecular Engineering of DⰒπ–A Type of Blue-Colored Dyes for Highly Efficient Solid-State Dye-Sensitized Solar Cells through Co-Sensitization. ACS Applied Materials & Interfaces, 2018, 10, 35946-35952.	8.0	8
678	Molecular Engineering of Photocathodes based on Polythiophene Organic Semiconductors for Photoelectrochemical Hydrogen Generation. ACS Applied Materials & Interfaces, 2021, 13, 40602-40611.	8.0	8
679	Dye-sensitized photoanode decorated with pyridine additives for efficient solar water oxidation. Chinese Journal of Catalysis, 2021, 42, 1352-1359.	14.0	8
680	Determination of EDTA Species in Water by Second-Derivative Square-Wave Voltammetry Using a Chitosan-Coated Glassy Carbon Electrode. Analytical Sciences, 2003, 19, 607-609.	1.6	7
681	Synthesis of 3â€Arylâ€5â€tâ€butylsalicylaldehydes and their Chiral Schiff Base Compounds. Synthetic Communications, 2007, 37, 3815-3826.	2.1	7
682	Synthesis and structure of a µâ€oxo diiron(III) complex with an <i>N</i> â€pyridylmethylâ€ <i>N</i> , <i>N</i> â€bis(4â€methylbenzimidazolâ€2â€yl)amine ligand and its catalytic property for hydrocarbon oxidation. Applied Organometallic Chemistry, 2008, 22, 573-576.	3.5	7
683	A new square planar mononuclear MnIII complex for catalytic epoxidation of stilbene. Journal of Organometallic Chemistry, 2008, 693, 1150-1153.	1.8	7
684	EFFECT OF THE CHROMOPHORES STRUCTURES ON THE PERFORMANCE OF SOLID-STATE DYE SENSITIZED SOLAR CELLS. Nano, 2014, 09, 1440005.	1.0	7

#	Article	IF	CITATIONS
685	Air–water two-phase flow in a rolling 3×3 rod bundle under stagnant condition. Experimental Thermal and Fluid Science, 2014, 55, 200-209.	2.7	7
686	Organic D–ĩ€â€"A sensitizer with pyridinium as the acceptor group for dye-sensitized solar cells. RSC Advances, 2014, 4, 34644-34648.	3.6	7
687	Evaluation of interfacial area transport equation in vertical bubbly two-phase flow in large diameter pipes. Annals of Nuclear Energy, 2015, 75, 199-209.	1.8	7
688	Ligandâ€Controlled Electrodeposition of Highly Intrinsically Active and Optically Transparent NiFeO _{<i>x</i>} H _{<i>y</i>} Film as a Water Oxidation Electrocatalyst. ChemSusChem, 2017, 10, 4690-4694.	6.8	7
689	Electrocatalytic water oxidation by a nickel oxide film derived from a molecular precursor. Chinese Journal of Catalysis, 2017, 38, 1812-1817.	14.0	7
690	High isotropic dispiro structure hole transporting materials for planar perovskite solar cells. Journal of Energy Chemistry, 2019, 32, 152-158.	12.9	7
691	Urchinâ€Like Cobaltâ€Copper (Hydr)oxides as an Efficient Water Oxidation Electrocatalyst. ChemPlusChem, 2020, 85, 1339-1346.	2.8	7
692	Tuning the O–O bond formation pathways of molecular water oxidation catalysts on electrode surfaces via second coordination sphere engineering. Chinese Journal of Catalysis, 2021, 42, 460-469.	14.0	7
693	Necessity of structural rearrangements for O O bond formation between O5 and W2 in photosystem II. Journal of Energy Chemistry, 2021, 57, 436-442.	12.9	7
694	Switching the O-O Bond Formation Pathways of Ru-pda Water Oxidation Catalyst by Third Coordination Sphere Engineering. Research, 2021, 2021, 9851231.	5.7	7
695	Metalloid Teâ€Doped Feâ€Based Catalysts Applied for Electrochemical Water Oxidation. ChemistrySelect, 2021, 6, 6154-6158.	1.5	7
696	Hydrophobic Interactions of Ru-bda-Type Catalysts for Promoting Water Oxidation Activity. Energy & Fuels, 2021, 35, 19096-19103.	5.1	7
697	Novel porphyrin–thallium–platinum complex with "naked―metal–metal bond: multinuclear NMR characterization of [(tpp)Tl–Pt(CN)5]2â^' and [(thpp)Tl–Pt(CN)5]2â^' in solution. Inorganica Chimica Acta, 2004, 357, 4073-4077.	2.4	6
698	Solid state dye-sensitized solar cells prepared by infiltrating a molten hole conductor into a mesoporous film at a temperature below 150°C. Synthetic Metals, 2011, 161, 2280-2283.	3.9	6
699	Polymerization of rac-lactide catalyzed by group 4 metal complexes containing chiral N atoms. Polymer Bulletin, 2012, 68, 1789-1799.	3.3	6
700	A visualized study of micro-bubble emission boiling. International Communications in Heat and Mass Transfer, 2014, 59, 148-157.	5.6	6
701	Characteristics of slug flow in a narrow rectangular channel under inclined conditions. Progress in Nuclear Energy, 2014, 76, 24-35.	2.9	6
702	Slug flow in a vertical narrow rectangular channel – Laminar and turbulent regimes in the main flow and turbulent regime in the wake region of the Taylor bubble. Progress in Nuclear Energy, 2015, 85, 164-177.	2.9	6

#	Article	IF	CITATIONS
703	Molecular catalysts for artificial photosynthesis: general discussion. Faraday Discussions, 2017, 198, 353-395.	3.2	6
704	Low-cost solution-processed digenite Cu ₉ S ₅ counter electrode for dye-sensitized solar cells. RSC Advances, 2017, 7, 38452-38457.	3.6	6
705	Improving the performance of water splitting electrodes by composite plating with nano-SiO2. Electrochimica Acta, 2018, 281, 60-68.	5.2	6
706	Revealing ultrafast relaxation dynamics in six-thiophene thin film and single crystal. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112920.	3.9	6
707	Helical Copper Redox Mediator with Low Electron Recombination for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 5252-5259.	6.7	6
708	Stable Dyeâ€Sensitized Solar Cells Based on Copper(II/I) Redox Mediators Bearing a Pentadentate Ligand. Angewandte Chemie, 2021, 133, 16292-16299.	2.0	6
709	2D materials for solar fuels via artificial photosynthesis. National Science Review, 2022, 9, nwab116.	9.5	6
710	Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction. Angewandte Chemie, 2021, 133, 27332-27340.	2.0	6
711	Switching Pathways of Triplet State Formation by Twisted Intramolecular Charge Transfer. Journal of Physical Chemistry B, 2021, 125, 12518-12527.	2.6	6
712	Water oxidation by a noble metal-free photoanode modified with an organic dye and a molecular cobalt catalyst. Journal of Materials Chemistry A, 2022, 10, 9121-9128.	10.3	6
713	Effect of Deprotonation of a Benzimidazolyl Ligand on the Redox Potential and the Structures of Mononuclear Ruthenium(II) Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 4128-4131.	2.0	5
714	Electrochemical water oxidation by photo-deposited cobalt-based catalyst on a nano-structured TiO2 electrode. Science China Chemistry, 2012, 55, 1976-1981.	8.2	5
715	Highly efficient organic dyes containing a benzopyran ring as a π–bridge for DSSCs. RSC Advances, 2013, 3, 12688.	3.6	5
716	Influence of different methylene units on the performance of rhodanine organic dyes for dye-sensitized solar cells. RSC Advances, 2014, 4, 4811.	3.6	5
717	Research on frictional resistance of bubbly flow in rolling rectangular ducts. Nuclear Engineering and Design, 2014, 278, 108-116.	1.7	5
718	Evaluation analysis of correlations for predicting the void fraction and slug velocity of slug flow in an inclined narrow rectangular duct. Nuclear Engineering and Design, 2014, 273, 155-164.	1.7	5
719	Enhancing the Energyâ€Conversion Efficiency of Solidâ€State Dyeâ€Sensitized Solar Cells with a Chargeâ€Transfer Complex based on 2,3â€Dichloroâ€5,6â€dicyanoâ€1,4â€benzoquinone. Energy Technology, 2 752-758.	2018886,	5
720	Hollow Carbon@NiCo ₂ O ₄ Core–Shell Microspheres for Efficient Electrocatalytic Oxygen Evolution. Energy Technology, 2019, 7, 1800919.	3.8	5

#	Article	IF	CITATIONS
721	Upper Excited State Photophysics of Malachite Green in Solution and Films. Journal of Physical Chemistry B, 2020, 124, 4293-4302.	2.6	5
722	<i>N</i> -Bromosuccinimide as a p-type dopant for a Spiro-OMeTAD hole transport material to enhance the performance of perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 2294-2300.	4.9	5
723	Offâ€Set Interactions of Ruthenium–bda Type Catalysts for Promoting Waterâ€Splitting Performance. Angewandte Chemie, 2021, 133, 14625-14632.	2.0	5
724	Thiophene-fused carbazole derivative dyes for high-performance dye-sensitized solar cells. Tetrahedron, 2021, 88, 132124.	1.9	5
725	Supramolecular Co-adsorption on TiO ₂ to enhance the efficiency of dye-sensitized solar cells. Journal of Materials Chemistry A, 2021, 9, 13697-13703.	10.3	5
726	Natural Chlorophyll Derivative Assisted Defect Passivation and Hole Extraction for MAPbl ₃ Perovskite Solar Cells with Efficiency Exceeding 20%. ACS Applied Energy Materials, 2022, 5, 1390-1396.	5.1	5
727	Multiphase Fluid Dynamics and Mass Transport Modeling in a Porous Electrode toward Hydrogen Evolution Reaction. Industrial & Engineering Chemistry Research, 2022, 61, 8323-8332.	3.7	5
728	Effects of the precatalyst structure and the Mg-containing third-component on cyclo-oligomerization of ethene. Journal of Molecular Catalysis A, 2004, 216, 13-17.	4.8	4
729	Synthesis of some new 4â€substitutedâ€3, 5â€bis(2â€pyridyl)â€1 <i>h</i> â€pyrazole. Journal of Heterocyclic Chemistry, 2006, 43, 1669-1672.	2.6	4
730	The Effect of UV-Irradiation (under Short-Circuit Condition) on Dye-Sensitized Solar Cells Sensitized with a Ru-Complex Dye Functionalized with a (diphenylamino)Styryl-Thiophen Group. International Journal of Photoenergy, 2009, 2009, 1-9.	2.5	4
731	Improving the power conversion efficiency of solid state dye sensitized solar cells with a N-oxoammonium salt: 2,2,6,6-Tetramethyl-1-oxopiperidinebromide. Solar Energy, 2018, 170, 1001-1008.	6.1	4
732	Octacarbonyl(5-methoxy-2,3-dihydro-1 <i>H</i> -benzimidazol-2-yl)di-μ ₃ -sulfido-diiron(I)iron(II)(2< Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m217-m217.	<i>Fg</i> â€	E" <i>Fe</i>).
733	Efficient dye-sensitized solar cells based on bioinspired copper redox mediators by tailoring counterions. Journal of Materials Chemistry A, 2022, 10, 4131-4136.	10.3	4
734	Photoelectrochemical water oxidation improved by pyridine <i>N</i> -oxide as a mimic of tyrosine-Z in photosystem II. Chemical Science, 2022, 13, 4955-4961.	7.4	4
735	Pyreneâ€Based Dopantâ€Free Holeâ€Transport Polymers with Fluorine Induced Favorable Molecular Stacking Enable Efficient Perovskite Solar Cells. Angewandte Chemie, 0, , .	2.0	4
736	Fluorescence quenching of viologen on xanthene dyes in dyads. Dyes and Pigments, 1995, 28, 275-279.	3.7	3
737	The bromination mechanism of 1-aminoanthraquinone-2,4-disulfonic acid in sulfuric acid. Dyes and Pigments, 2006, 71, 231-235.	3.7	3
738	Synthesis of New Chiral Schiff Bases Containing Bromo- and Iodo-Functionalized Hydroxynaphthalene Frameworks. Synthetic Communications, 2011, 41, 1381-1393.	2.1	3

#	Article	IF	CITATIONS
739	Experimental Study of a Gas Separator for MSR Gas Removal System. , 2013, , .		3
740	Water Oxidation. European Journal of Inorganic Chemistry, 2014, 2014, 571-572.	2.0	3
741	Dye-Sensitized Photoelectrochemical Cells. , 2018, , 503-565.		3
742	Covalently Linked Ruthenium(II)â^'Manganese(II) Complexes: Distance Dependence of Quenching and Electron Transfer. European Journal of Inorganic Chemistry, 2001, 2001, 1019-1029.	2.0	3
743	Electrochemical and photoelectrochemical water splitting with a CoOx catalyst prepared by flame assisted deposition. Dalton Transactions, 2020, 49, 588-592.	3.3	3
744	Towards efficient photochemistry from upper excited electronic states: detection of long S2 lifetime of perylene. Journal of Chemical Physics, 2021, 155, 191102.	3.0	3
745	Phenanthrocarbazoleâ€Based Dopantâ€Free Holeâ€Transport Polymer with Noncovalently Conformational Locking for Efficient Perovskite Solar Cells. Angewandte Chemie, Ó, , .	2.0	3
746	NiCo ₂ O ₄ thin film prepared by electrochemical deposition as a hole-transport layer for efficient inverted perovskite solar cells. RSC Advances, 2022, 12, 12544-12551.	3.6	3
747	Towards artificial photosynthesis — Light-induced intramolecular electron transfer from manganese (II) to ruthenium (III) in a binuclear complex. Journal of Chemical Sciences, 1997, 109, 389-396.	1.5	2
748	catena-Poly[[[(1,10-phenanthroline-κ2N,Nâ€2)manganese(II)]-ι⁄4-L-tartrato-κ4O1,O2:O3,O4] hexahydrate]. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m402-m404.	0.4	2
749	Preparation, characterization and catalytic oxidation properties of tris[2-(2-pyridyl)benzimidazole]iron(II) complexes. Applied Organometallic Chemistry, 2004, 18, 277-281.	3.5	2
750	Electrospray Ionization Mass Spectrometry Studies of Rhenium(I) Bipyridyl Complexes. European Journal of Mass Spectrometry, 2004, 10, 599-603.	1.0	2
751	Asymmetric epoxidation of chromenes catalyzed by chiral pyrrolidine SalenMn(III) complexes with an anchored functional group. Applied Organometallic Chemistry, 2008, 22, 592-597.	3.5	2
752	10-Ethyl-3-(5-methyl-1,3,4-oxadiazol-2-yl)-10H-phenothiazine. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o649-o649.	0.2	2
753	Dye-Sensitized Photoelectrochemical Cells. , 2013, , 385-441.		2
754	Research on transient flow resistance of two-phase in narrow rectangular channel under rolling motions. , 2013, , .		2
755	Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition. Annals of Nuclear Energy, 2014, 73, 465-477.	1.8	2
756	Synthesis, electrochemistry and photo-induced electron transfer of unsymmetrical dinuclear ruthenium osmium 2,2′-bipyridine complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 287, 40-48.	3.9	2

#	Article	IF	CITATIONS
757	Across the Board: Licheng Sun. ChemSusChem, 2015, 8, 22-23.	6.8	2
758	Inorganic assembly catalysts for artificial photosynthesis: general discussion. Faraday Discussions, 2017, 198, 481-507.	3.2	2
759	Metal–Molybdenum Sulfide Nanosheet Arrays Prepared by Anion Exchange as Catalysts for Hydrogen Evolution. Energy Technology, 2020, 8, 2000595.	3.8	2
760	Ni III â€rich NiFeBa as an Efficient Catalyst for Water Oxidation. ChemSusChem, 2021, 14, 2516-2520.	6.8	2
761	Singlet Fission, Polaron Formation, and Energy Transfer in Indolo[3,2-b]carbazole Thin Films and Single Crystals. Journal of Physical Chemistry C, 2021, 125, 18827-18833.	3.1	2
762	Investigation on the Extendibility of Self-Similar Heat Sink for Cooling Electrical Equipment With Varying Sizes. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 57-70.	2.5	2
763	Toward Solar Energy Conversion into Fuels: Design and Synthesis of Ruthenium—Manganese Supramolecular Complexes to Mimic the Function of Photosystem II. ACS Symposium Series, 2003, , 219-244.	0.5	1
764	Pentacarbonyl(diphenyl(N-propylamine)phosphine)diiron(μ-1,3-propanedithiolate). Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m852-m853.	0.2	1
765	Synthesis of chiral salen Mn(III) complexes covalently linked to Re(I)-based photosensitizers. Journal of Coordination Chemistry, 2006, 59, 475-484.	2.2	1
766	Sign of excited spin state magnetic anisotropy parameters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 541-543.	3.9	1
767	Pentacarbonyl-1κ2C,2κ3C-(diphenylphosphine-1κP)(μ-2-propyl-2-azapropane-1,3-dithiolato-1κ2S,Sâ€2:2κ2S,S Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1959-m1960.	′)diiron 0.2	(Feậ€"Fe).
768	Experimental Study on the Fluid Stratification Mechanism in the Density Lock. Journal of Nuclear Science and Technology, 2009, 46, 925-932.	1.3	1
769	Experimental investigations of single-phase and two-phase flow resistance in narrow rectangular duct under rolling condition. , 2013, , .		1
770	Solar cells and photocatalytic systems: general discussion. Faraday Discussions, 2014, 176, 313-331.	3.2	1
771	Synthesis and Characterization of a Dinuclear Manganese(III,III) Complex with Three Phenolate Ligands. , 2002, 2002, 2965.		1
772	Research and Development of Dye-Sensitized Solar Cells in the Center for Molecular Devices: From Molecules to Modules. , 2011, , .		1
773	Rubrene Nanoaggregate-Integrated CH ₃ NH ₃ PbI ₃ Bilayer Film: Role of Singlet Fission and Photon Upconversion. ACS Applied Nano Materials, 2022, 5, 801-809.	5.0	1
774	The future challenges in molecular water oxidation catalysts. Journal of Energy Chemistry, 2022, 73, 643-645.	12.9	1

#	Article	IF	CITATIONS
775	Inhibition of OH Radical-induced Strand Break Formation of Poly(U) by Ru(bpy) ²⁺ ₃ or Ru(phen) ²⁺ ₃ Attached to the Polynucleotide. International Journal of Radiation Biology, 1995, 68, 525-533.	1.8	0
776	Synthesis and Characterisation of a High Valent Dinuclear Mn(III,III) Complex of a Triphenolate Ligand [N4O3]3- with two Extra Functional Groups. Journal of Chemical Research, 2004, 2004, 57-58.	1.3	0
777	An Unusual Cyclization in a Bis(cysteinyl-S) Diiron Complex Related to the Active Site of Fe-Only Hydrogenases. Angewandte Chemie - International Edition, 2005, 44, 506-506.	13.8	0
778	Synthesis, Structures and Electrochemical Properties of Nitro- and Amino-Functionalized Diiron Azadithiolates as Active Site Models of Fe-Only Hydrogenases. Chemistry - A European Journal, 2005, 11, 803-803.	3.3	0
779	2-(5-Bromothiophen-2-yl)-5-[5-(10-ethylphenothiazin-3-yl)thiophen-2-yl]-1,3,4-oxadiazole. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1383-o1384.	0.2	0
780	Study on the Characteristics in the Liquid Slug of Rising Slug Flow in Narrow Rectangular Channel. , 2013, , .		0
781	Effect of rolling motion on local characteristics of gas-liquid two-phase flow using an optical probe. , 2013, , .		0
782	An experimental research on microbubble emission boiling. , 2013, , .		0
783	Characteristics of slug flow in narrow rectangular channels under vertical condition. , 2013, , .		0
784	Flow regimes of adiabatic gas-liquid two-phase under rolling conditions. , 2013, , .		0
785	Experimental Investigation on Bubbly Flow in Rectangular Channel Under Rolling Condition. , 2013, , .		0
786	Experimental Study on Resistance Characteristics in a 3 $ ilde{A}-$ 3 Rod Bundle. , 2014, , .		0
787	Carbon Nanotubes: Promoting the Water Oxidation Catalysis by Synergistic Interactions between Ni(OH)2and Carbon Nanotubes (Adv. Energy Mater. 15/2016). Advanced Energy Materials, 2016, 6, .	19.5	0
788	Biological approaches to artificial photosynthesis, fundamental processes and theoretical approaches: general discussion. Faraday Discussions, 2017, 198, 147-168.	3.2	0
789	Hierarchically Structured FeNiO x H y Electrocatalyst Formed by Inâ€Situ Transformation of Metal Phosphate for Efficient Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 1740-1740.	6.8	0
790	Editorial for the Special Issue of ChemSusChem on Green Carbon Science: CO 2 Capture and Conversion. ChemSusChem, 2020, 13, 6051-6053.	6.8	0
791	Bio-Inspired Water Oxidation Catalysts. , 2021, , 589-610.		0
792	LIGHT DRIVEN MULTISTEP ELECTRON TRANSFER IN A TYROSINE-RUTHENIUM-COMPLEX ANCHORED TO TIO ₂ NANOPARTICLES., 2002, , .		0

#	Article	IF	CITATIONS
793	Light-Induced Electron Transfer Between A Substituted Tyrosine and [Ru(bpy)3]2+. , 1998, , 4217-4220.		0
794	Two-Phase Slug Flow in a Narrow Rectangular Channel Under Inclined Conditions. , 2014, , .		0
795	EFFECTS OF A NONCONDENSABLE GAS ON THE MICROBUBBLE EMISSION BOILING. Heat Transfer Research, 2016, 47, 597-607.	1.6	0
796	Polymeric Viologen-Based Electron Transfer Mediator for Improving the Photoelectrochemical Water Splitting on Sb2Se3 Photocathode. Fundamental Research, 2022, , .	3.3	0