Raquel Muñoz-Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4560050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling SARS-CoV-2: Comparative Pathology in Rhesus Macaque and Golden Syrian Hamster Models. Toxicologic Pathology, 2022, 50, 280-293.	1.8	21
2	Induction and Evasion of Type-I Interferon Responses during Influenza A Virus Infection. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038414.	6.2	15
3	Gut microbiota manipulation during the prepubertal period shapes behavioral abnormalities in a mouse neurodevelopmental disorder model. Scientific Reports, 2020, 10, 4697.	3.3	29
4	OTUB1 Is a Key Regulator of RIG-I-Dependent Immune Signaling and Is Targeted for Proteasomal Degradation by Influenza A NS1. Cell Reports, 2020, 30, 1570-1584.e6.	6.4	46
5	Chemical intervention of influenza virus mRNA nuclear export. PLoS Pathogens, 2020, 16, e1008407.	4.7	11
6	African Swine Fever Virus Ubiquitin-Conjugating Enzyme Interacts With Host Translation Machinery to Regulate the Host Protein Synthesis. Frontiers in Microbiology, 2020, 11, 622907.	3.5	21
7	Molecular basis for the exploitation of nuclear mRNA export by influenza A virus. FASEB Journal, 2020, 34, 1-1.	0.5	0
8	Structural basis for influenza virus NS1 protein block of mRNA nuclear export. Nature Microbiology, 2019, 4, 1671-1679.	13.3	38
9	Viral Fitness Landscapes in Diverse Host Species Reveal Multiple Evolutionary Lines for the NS1 Gene of Influenza A Viruses. Cell Reports, 2019, 29, 3997-4009.e5.	6.4	13
10	Differential Modulation of Innate Immune Responses in Human Primary Cells by Influenza A Viruses Carrying Human or Avian Nonstructural Protein 1. Journal of Virology, 2019, 94, .	3.4	12
11	Influenza Virus NS1 Protein-RNA Interactome Reveals Intron Targeting. Journal of Virology, 2018, 92, .	3.4	23
12	Co-regulatory activity of hnRNP K and NS1-BP in influenza and human mRNA splicing. Nature Communications, 2018, 9, 2407.	12.8	60
13	Influenza virus differentially activates mTORC1 and mTORC2 signaling to maximize late stage replication. PLoS Pathogens, 2017, 13, e1006635.	4.7	74
14	Redistribution of Endosomal Membranes to the African Swine Fever Virus Replication Site. Viruses, 2017, 9, 133.	3.3	20
15	Antiviral Role of IFITM Proteins in African Swine Fever Virus Infection. PLoS ONE, 2016, 11, e0154366.	2.5	53
16	Influenza virus mRNA trafficking through host nuclear speckles. Nature Microbiology, 2016, 1, 16069.	13.3	78
17	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
18	Cholesterol Flux Is Required for Endosomal Progression of African Swine Fever Virions during the Initial Establishment of Infection. Journal of Virology, 2016, 90, 1534-1543.	3.4	38

#	Article	IF	CITATIONS
19	Host cell targets for African swine fever virus. Virus Research, 2015, 209, 118-127.	2.2	24
20	African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus Research, 2015, 200, 45-55.	2.2	69
21	Analysis of HDAC6 and BAG3-Aggresome Pathways in African Swine Fever Viral Factory Formation. Viruses, 2015, 7, 1823-1831.	3.3	13
22	African swine fever virus-cell interactions: From virus entry to cell survival. Virus Research, 2013, 173, 42-57.	2.2	48
23	Small Rho GTPases and Cholesterol Biosynthetic Pathway Intermediates in African Swine Fever Virus Infection. Journal of Virology, 2012, 86, 1758-1767.	3.4	41