List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4559863/publications.pdf Version: 2024-02-01

ALAN L DODTED

#	Article	IF	CITATIONS
1	An Approach to Construct Technological Convergence Networks Across Different IPC Hierarchies and Identify Key Technology Fields. IEEE Transactions on Engineering Management, 2024, 71, 346-358.	3.5	0
2	Technology life cycle analysis: From the dynamic perspective of patent citation networks. Technological Forecasting and Social Change, 2022, 181, 121760.	11.6	13
3	An introduction of advanced tech mining: Technical emergence indicators and measurements. Technological Forecasting and Social Change, 2022, 182, 121855.	11.6	4
4	Parallel or Intersecting Lines? Intelligent Bibliometrics for Investigating the Involvement of Data Science in Policy Analysis. IEEE Transactions on Engineering Management, 2021, 68, 1259-1271.	3.5	38
5	Exploring Technology Evolution Pathways to Facilitate Technology Management: From a Technology Life Cycle Perspective. IEEE Transactions on Engineering Management, 2021, 68, 1347-1359.	3.5	19
6	Profiling and predicting the problem-solving patterns in China's research systems: A methodology of intelligent bibliometrics and empirical insights. Quantitative Science Studies, 2021, 2, 409-432.	3.3	7
7	Common contributing factors to COVID-19 and inflammatory bowel disease. Toxicology Reports, 2021, 8, 1616-1637.	3.3	8
8	Toxicology issues related to the COVID–19 outbreak. , 2021, , 359-372.		0
9	Corporate engagement with nanotechnology through research publications. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	3
10	Co-citation, bibliographic coupling and leading authors, institutions and countries in the 50 years of Technological Forecasting and Social Change. Technological Forecasting and Social Change, 2021, 165, 120487.	11.6	65
11	An exploratory perspective to measure the emergence degree for a specific technology based on the philosophy of swarm intelligence. Technological Forecasting and Social Change, 2021, 166, 120621.	11.6	7
12	Combining tech mining and semantic TRIZ for technology assessment: Dye-sensitized solar cell as a case. Technological Forecasting and Social Change, 2021, 169, 120826.	11.6	10
13	Guest Editorial: Tech Mining for Engineering Management: An Introduction. IEEE Transactions on Engineering Management, 2021, 68, 1211-1213.	3.5	3
14	Determination of Factors Driving the Genome Editing Field in the CRISPR Era Using Bibliometrics. CRISPR Journal, 2021, 4, 728-738.	2.9	3
15	Interdisciplinary knowledge combinations and emerging technological topics: Implications for reducing uncertainties in research evaluation. Research Evaluation, 2021, 30, 127-140.	2.6	5
16	Contributing factors common to COVIDâ \in 19 and gastrointestinal cancer. Oncology Reports, 2021, 47, .	2.6	6
17	Evaluating technological emergence using text analytics: two case technologies and three approaches. Scientometrics, 2020, 122, 215-247.	3.0	17
18	Uncovering the knowledge flows and intellectual structures of research in Technological Forecasting and Social Change: A journey through history. Technological Forecasting and Social Change, 2020, 160, 120210.	11.6	20

#	Article	IF	CITATIONS
19	The under-reported role of toxic substance exposures in the COVID-19 pandemic. Food and Chemical Toxicology, 2020, 145, 111687.	3.6	26
20	Vaccine- and natural infection-induced mechanisms that could modulate vaccine safety. Toxicology Reports, 2020, 7, 1448-1458.	3.3	47
21	Modeling and Analytics to Support Emerging International Innovation Partnerships. IEEE Engineering Management Review, 2020, 48, 54-64.	1.3	1
22	A 3-dimensional analysis for evaluating technology emergence indicators. Scientometrics, 2020, 124, 27-55.	3.0	6
23	Measuring tech emergence: A contest. Technological Forecasting and Social Change, 2020, 159, 120176.	11.6	12
24	Tracking and Mining the COVID-19 Research Literature. Frontiers in Research Metrics and Analytics, 2020, 5, 594060.	1.9	18
25	[Editorial] COVID‑19: Post‑lockdown guidelines. International Journal of Molecular Medicine, 2020, 46, 463-466.	4.0	27
26	[Comment] COVID‴19 vaccine safety. International Journal of Molecular Medicine, 2020, 46, 1599-1602.	4.0	52
27	National nanotechnology research prominence. Technology Analysis and Strategic Management, 2019, 31, 25-39.	3.5	12
28	Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles. Technological Forecasting and Social Change, 2019, 146, 785-794.	11.6	27
29	Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study. Technological Forecasting and Social Change, 2019, 146, 795-807.	11.6	50
30	What people learn about how people learn: An analysis of citation behavior and the multidisciplinary flow of knowledge. Research Policy, 2019, 48, 103835.	6.4	6
31	Measuring Interdisciplinary Research Categories and Knowledge Transfer: A Case Study of Connections between Cognitive Science and Education. Perspectives on Science, 2019, 27, 582-618.	1.0	2
32	Data Analytics for Better Informed Technology & Engineering Management. IEEE Engineering Management Review, 2019, 47, 29-32.	1.3	2
33	Research addressing emerging technological ideas has greater scientific impact. Research Policy, 2019, 48, 103834.	6.4	36
34	Updating a search strategy to track emerging nanotechnologies. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	23
35	Learning about learning: patterns of sharing of research knowledge among Education, Border, and Cognitive Science fields. Scientometrics, 2019, 118, 1093-1117.	3.0	7
36	The relationship between forward and backward diversity in CORE datasets. Scientometrics, 2019, 120, 961-974.	3.0	0

#	Article	IF	CITATIONS
37	Can nanogenerators contribute to the global greening data centres?. Nano Energy, 2019, 60, 235-246.	16.0	8
38	Conceptual definition of technology emergence: A long journey from philosophy of science to science policy. Technology in Society, 2019, 59, 101126.	9.4	18
39	Identifying translational indicators and technology opportunities for nanomedical research using tech mining: The case of gold nanostructures. Technological Forecasting and Social Change, 2019, 146, 767-775.	11.6	20
40	Analysing the theoretical roots of technology emergence: an evolutionary perspective. Scientometrics, 2019, 119, 97-118.	3.0	19
41	Collaborative networks in gene editing. Nature Biotechnology, 2019, 37, 1107-1109.	17.5	17
42	An approach to identify emergent topics of technological convergence: A case study for 3D printing. Technological Forecasting and Social Change, 2019, 146, 723-732.	11.6	35
43	An assessment of technology forecasting: Revisiting earlier analyses on dye-sensitized solar cells (DSSCs). Technological Forecasting and Social Change, 2019, 146, 831-843.	11.6	12
44	Forecasting technical emergence: An introduction. Technological Forecasting and Social Change, 2019, 146, 626-627.	11.6	8
45	Emergence scoring to identify frontier R&D topics and key players. Technological Forecasting and Social Change, 2019, 146, 628-643.	11.6	54
46	An indicator of technical emergence. Scientometrics, 2018, 115, 35-49.	3.0	53
47	A technology delivery system for characterizing the supply side of technology emergence: Illustrated for Big Data & Analytics. Technological Forecasting and Social Change, 2018, 130, 165-176.	11.6	26
48	Insights into relationships between disruptive technology/innovation and emerging technology: A bibliometric perspective. Technological Forecasting and Social Change, 2018, 129, 285-296.	11.6	80
49	Facilitating the discovery of relevant studies on risk analysis for three-dimensional printing based on an integrated framework. Scientometrics, 2018, 114, 277-300.	3.0	7
50	Measuring and Visualizing Research Collaboration and Productivity. Journal of Data and Information Science, 2018, 3, 54-81.	1.1	5
51	Does deep learning help topic extraction? A kernel k-means clustering method with word embedding. Journal of Informetrics, 2018, 12, 1099-1117.	2.9	105
52	How is Data Science Involved in Policy Analysis?: A Bibliometric Perspective. , 2018, , .		1
53	Tech mining to validate and refine a technology roadmap. World Patent Information, 2018, 55, 1-18.	1.7	13
54	Lessons From 10 Years of Nanotechnology Bibliometric Analysis. , 2018, , 11-31.		4

#	Article	IF	CITATIONS
55	Evolutionary trend analysis of nanogenerator research based on a novel perspective of phased bibliographic coupling. Nano Energy, 2017, 34, 93-102.	16.0	80
56	Combining SAO semantic analysis and morphology analysis to identify technology opportunities. Scientometrics, 2017, 111, 3-24.	3.0	32
57	A hybrid method to trace technology evolution pathways: a case study of 3D printing. Scientometrics, 2017, 111, 185-204.	3.0	64
58	Visual Analysis of Patent Data Through Global Maps and Overlays. The Kluwer International Series on Information Retrieval, 2017, , 281-295.	1.0	1
59	Crossing borders: A citation analysis of connections between Cognitive Science and Educational Research … and the fields in between. Research Evaluation, 2017, 26, 242-255.	2.6	13
60	Forecasting potential sensor applications of triboelectric nanogenerators through tech mining. Nano Energy, 2017, 35, 358-369.	16.0	24
61	Scientometrics for tech mining: an introduction. Scientometrics, 2017, 111, 1875-1878.	3.0	10
62	A measure of staying power: Is the persistence of emergent concepts more significantly influenced by technical domain or scale?. Scientometrics, 2017, 111, 2077-2087.	3.0	11
63	Early insights on the Emerging Sources Citation Index (ESCI): an overlay map-based bibliometric study. Scientometrics, 2017, 111, 2041-2057.	3.0	34
64	Visualization of Disciplinary Profiles: Enhanced Science Overlay Maps. Journal of Data and Information Science, 2017, 2, 68-111.	1.1	36
65	Delineating Translational Innovation Pathways for Nanomedical Research Using Tech Mining. , 2017, , .		0
66	Technological Emergence Indicators Using Emergence Scoring. , 2017, , .		10
67	Validating the Earlier Analyses and Forecasting on Dye-Sensitized Solar Cells (DSSCs). , 2017, , .		1
68	Discovering Interactions in Big Data Research: A Learning-Enhanced Bibliometric Study. , 2017, , .		1
69	A measure of knowledge flow between specific fields: Implications of interdisciplinarity for impact and funding. PLoS ONE, 2017, 12, e0185583.	2.5	19
70	Insight into the Disciplinary Structure of Nanoscience & Nanotechnology. Journal of Data and Information Science, 2017, 2, 70-88.	1.1	4
71	A taxonomy of small firm technology commercialization. Industrial and Corporate Change, 2016, 25, 371-405.	2.8	31
72	Exploring Technology evolution pathways to facilitate Technology management: A study of Dye-sensitized solar cells (DSSCs). , 2016, , .		3

#	Article	IF	CITATIONS
73	A systematic method for technology assessment: Illustrated for â€~Big Data'. , 2016, , .		0
74	A hybrid similarity measure method for patent portfolio analysis. Journal of Informetrics, 2016, 10, 1108-1130.	2.9	59
75	Generating Competitive Technical Intelligence Using Topical Analysis, Patent Citation Analysis, and Term Clumping Analysis. Innovation, Technology and Knowledge Management, 2016, , 153-172.	0.8	3
76	Big Data and Business: Tech Mining to Capture Business Interests and Activities around Big Data. , 2016, , .		3
77	Early social science research about Big Data. Science and Public Policy, 2016, , scw021.	2.4	3
78	Technology roadmapping for competitive technical intelligence. Technological Forecasting and Social Change, 2016, 110, 175-186.	11.6	56
79	Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research. Technological Forecasting and Social Change, 2016, 105, 179-191.	11.6	132
80	Navigating the innovation trajectories of technology by combining specialization score analyses for publications and patents: graphene and nano-enabled drug delivery. Scientometrics, 2016, 106, 1057-1071.	3.0	20
81	How Multidisciplinary Are the Multidisciplinary Journals Science and Nature?. PLoS ONE, 2016, 11, e0152637.	2.5	24
82	How Does National Scientific Funding Support Emerging Interdisciplinary Research: A Comparison Study of Big Data Research in the US and China. PLoS ONE, 2016, 11, e0154509.	2.5	40
83	Identifying target for technology mergers and acquisitions using patent information and semantic analysis. , 2015, , .		4
84	Mapping graphene science and development: Focused research with multiple application areas. Bulletin of the Association for Information Science & Technology, 2015, 41, 22-25.	0.1	7
85	A scientometric comparative study of singleâ€walled and multiâ€walled carbon nanotubes research. Proceedings of the Association for Information Science and Technology, 2015, 52, 1-4.	0.6	2
86	Analyzing collaboration networks and developmental patterns of nano-enabled drug delivery (NEDD) for brain cancer. Beilstein Journal of Nanotechnology, 2015, 6, 1666-1676.	2.8	13
87	Advancing the forecasting innovation pathways approach: hybrid and electric vehicles case. International Journal of Technology Management, 2015, 69, 275.	0.5	10
88	Identification of technology development trends based on subject–action–object analysis: The case of dye-sensitized solar cells. Technological Forecasting and Social Change, 2015, 98, 24-46.	11.6	62
89	A systematic method to create search strategies for emerging technologies based on the Web of Science: illustrated for †Big Data'. Scientometrics, 2015, 105, 2005-2022.	3.0	86
90	Nano-enabled drug delivery systems for brain cancer and Alzheimer's disease: research patterns and opportunities. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1763-1771.	3.3	30

#	Article	IF	CITATIONS
91	Meta Data: Big Data Research Evolving across Disciplines, Players, and Topics. , 2015, , .		5
92	Tech mining to generate indicators of future national technological competitiveness: Nano-Enhanced Drug Delivery (NEDD) in the US and China. Technological Forecasting and Social Change, 2015, 97, 168-180.	11.6	15
93	Analyzing patent topical information to identify technology pathways and potential opportunities. Scientometrics, 2015, 102, 811-827.	3.0	45
94	A bibliometric study of China's science and technology policies: 1949–2010. Scientometrics, 2015, 102, 1521-1539.	3.0	64
95	Patent overlay mapping: Visualizing technological distance. Journal of the Association for Information Science and Technology, 2014, 65, 2432-2443.	2.9	110
96	Four dimensional Science and Technology planning: A new approach based on bibliometrics and technology roadmapping. Technological Forecasting and Social Change, 2014, 81, 39-48.	11.6	104
97	Triple Helix innovation in China's dye-sensitized solar cell industry: hybrid methods with semantic TRIZ and technology roadmapping. Scientometrics, 2014, 99, 55-75.	3.0	50
98	Measuring the development of a common scientific lexicon in nanotechnology. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	17
99	Nano-enabled drug delivery: A research profile. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e889-e896.	3.3	34
100	Clustering scientific documents with topic modeling. Scientometrics, 2014, 100, 767-786.	3.0	166
101	A patent analysis method to trace technology evolutionary pathways. Scientometrics, 2014, 100, 705-721.	3.0	50
102	A technology opportunities analysis model: applied to dye-sensitised solar cells for China. Technology Analysis and Strategic Management, 2014, 26, 87-104.	3.5	32
103	How to combine term clumping and technology roadmapping for newly emerging science & technology competitive intelligence: "problem & solution―pattern based semantic TRIZ tool and case study. Scientometrics, 2014, 101, 1375-1389.	3.0	59
104	Distance and velocity measures: using citations to determine breadth and speed of research impact. Scientometrics, 2014, 100, 687-703.	3.0	18
105	Introduction to Special Issue on TechMining. Scientometrics, 2014, 100, 611-612.	3.0	2
106	"Term clumping―for technical intelligence: A case study on dye-sensitized solar cells. Technological Forecasting and Social Change, 2014, 85, 26-39.	11.6	131
107	Comparing methods to extract technical content for technological intelligence. Journal of Engineering and Technology Management - JET-M, 2014, 32, 97-109.	2.7	38
108	Tech mining for innovation management. Technology Analysis and Strategic Management, 2013, 25, 617-618.	3.5	11

1

#	Article	IF	CITATIONS
109	A hybrid visualisation model for technology roadmapping: bibliometrics, qualitative methodology and empirical study. Technology Analysis and Strategic Management, 2013, 25, 707-724.	3.5	63
110	Toward a more precise definition of self-citation. Scientometrics, 2013, 94, 777-780.	3.0	19
111	Validating indicators of interdisciplinarity: linking bibliometric measures to studies of engineering research labs. Scientometrics, 2013, 94, 439-468.	3.0	20
112	Technology life cycle analysis method based on patent documents. Technological Forecasting and Social Change, 2013, 80, 398-407.	11.6	156
113	Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs. Scientometrics, 2013, 95, 351-370.	3.0	131
114	Forecasting Innovation Pathways (FIP) for new and emerging science and technologies. Technological Forecasting and Social Change, 2013, 80, 267-285.	11.6	130
115	Applications of Nanotechnology to the Brain and Central Nervous System. , 2013, , 21-41.		2
116	Facilitating social and natural science cross-disciplinarity: Assessing the human and social dynamics program. Research Evaluation, 2013, , .	2.6	6
117	Research Coordination Networks: Evidence of the Relationship between Funded Interdisciplinary Networking and Scholarly Impact. BioScience, 2012, 62, 282-288.	4.9	54
118	International collaborative patterns in China's nanotechnology publications. International Journal of Technology Management, 2012, 59, 255.	0.5	12
119	Assessing research network and disciplinary engagement changes induced by an NSF program. Research Evaluation, 2012, 21, 89-104.	2.6	20
120	Visualising potential innovation pathways in a workshop setting: the case of nano-enabled biosensors. Technology Analysis and Strategic Management, 2012, 24, 527-542.	3.5	15
121	Text mining of information resources to inform Forecasting Innovation Pathways. Technology Analysis and Strategic Management, 2012, 24, 843-861.	3.5	36
122	Nanobiomedical science in China: a research field on the rise. Technology Analysis and Strategic Management, 2012, 24, 69-88.	3.5	0
123	Text Clumping for Technical Intelligence. , 2012, , .		8
124	Empirically informing a technology delivery system model for an emerging technology: illustrated for dyeâ€sensitized solar cells. R and D Management, 2012, 42, 133-149.	5.3	26
125	A forward diversity index. Scientometrics, 2012, 90, 407-427.	3.0	52

126 Innovation Risk Path Assessing for a Newly Emerging Science and Technology. , 2012, , 12-26.

#	Article	IF	CITATIONS
127	Assessment of Brazil's research literature. Technology Analysis and Strategic Management, 2011, 23, 601-621.	3.5	10
128	Characterising a technology development at the stage of early emerging applications: nanomaterial-enhanced biosensors. Technology Analysis and Strategic Management, 2011, 23, 527-544.	3.5	27
129	Mining external R&D. Technovation, 2011, 31, 171-176.	7.8	44
130	Measuring the influence of nanotechnology environmental, health and safety research. Research Evaluation, 2011, 20, 389-395.	2.6	3
131	The Use of Environmental, Health and Safety Research in Nanotechnology Research. Journal of Nanoscience and Nanotechnology, 2011, 11, 158-166.	0.9	21
132	Profiling leading scientists in nanobiomedical science: interdisciplinarity and potential leading indicators of research directions. R and D Management, 2011, 41, 288-306.	5.3	17
133	Tech mining: Text mining and visualization tools, as applied to nanoenhanced solar cells. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011, 1, 172-181.	6.8	12
134	Is there a shift to "active nanostructures�. Journal of Nanoparticle Research, 2010, 12, 1-10.	1.9	59
135	The emergence of social science research on nanotechnology. Scientometrics, 2010, 85, 595-611.	3.0	38
136	Science overlay maps: A new tool for research policy and library management. Journal of the Association for Information Science and Technology, 2010, 61, 1871-1887.	2.6	309
137	The research profiling method applied to nano-enhanced, thin-film solar cells. R and D Management, 2010, 40, 195-208.	5.3	39
138	Technology foresight: types and methods. International Journal of Foresight and Innovation Policy, 2010, 6, 36.	0.2	47
139	Practical research proposal and publication profiling. Research Evaluation, 2010, 19, 29-44.	2.6	16
140	High-tech indicators: assessing the competitiveness of selected European countries. Technology Analysis and Strategic Management, 2010, 22, 277-296.	3.5	8
141	Emerging technologies: quantitative identification and measurement. Technology Analysis and Strategic Management, 2010, 22, 361-376.	3.5	160
142	A systematic technology forecasting approach for New and Emerging Science and Technology: Case study of nano-enhanced biosensors. , 2009, , .		1
143	How interdisciplinary is nanotechnology?. Journal of Nanoparticle Research, 2009, 11, 1023-1041.	1.9	171
144	Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 2009, 81, 719-745.	3.0	546

#	Article	IF	CITATIONS
145	Where does nanotechnology belong in the map of science?. Nature Nanotechnology, 2009, 4, 534-536.	31.5	69
146	International high tech competitiveness: does China rank number 1?. Technology Analysis and Strategic Management, 2009, 21, 173-193.	3.5	21
147	Profiling research patterns for a New and Emerging Science and Technology: Dye-Sensitized Solar Cells. , 2009, , .		0
148	Refining search terms for nanotechnology. Journal of Nanoparticle Research, 2008, 10, 715-728.	1.9	291
149	Nanotechnology publications and citations by leading countries and blocs. Journal of Nanoparticle Research, 2008, 10, 981-986.	1.9	98
150	Future-Oriented Technology Analysis (FTA): Impact on policy and decision-making — The 2006 FTA International Seville Seminar. Technological Forecasting and Social Change, 2008, 75, 457-461.	11.6	11
151	How interdisciplinary is a given body of research?. Research Evaluation, 2008, 17, 273-282.	2.6	100
152	How "tech mining" can enhance R&D management. IEEE Engineering Management Review, 2008, 36, 72-72.	1.3	12
153	MINING CONFERENCE PROCEEDINGS FOR CORPORATE TECHNOLOGY KNOWLEDGE MANAGEMENT. International Journal of Innovation and Technology Management, 2007, 04, 103-119.	1.4	4
154	Translation of Innovative Designs Into Phase I Trials. Journal of Clinical Oncology, 2007, 25, 4982-4986.	1.6	190
155	How "Tech Mining―Can Enhance R&D Management. Research Technology Management, 2007, 50, 15-20.	0.8	21
156	Tech Mining to Accelerate Radical Innovation. , 2007, , .		3
157	Nanopatenting patterns in relation to product life cycle. Technological Forecasting and Social Change, 2007, 74, 1661-1680.	11.6	61
158	Measuring researcher interdisciplinarity. Scientometrics, 2007, 72, 117-147.	3.0	293
159	Interdisciplinary research: meaning, metrics and nurture. Research Evaluation, 2006, 15, 187-196.	2.6	192
160	Impact assessment methodology is too insular. Impact Assessment and Project Appraisal, 2006, 24, 86-88.	1.8	3
161	A Societal Outcomes Map for Health Research and Policy. American Journal of Public Health, 2006, 96, 441-446.	2.7	13
162	Just-in-time technology analysis support. International Journal of Technology Management, 2006, 34, 319.	0.5	3

#	Article	IF	CITATIONS
163	Special issue on tech mining. Technological Forecasting and Social Change, 2006, 73, 915-922.	11.6	22
164	A Systems Model of Innovation Processes in University STEM Education. Journal of Engineering Education, 2006, 95, 13-24.	3.0	32
165	QTIP: Quick technology intelligence processes. Technological Forecasting and Social Change, 2005, 72, 1070-1081.	11.6	66
166	A state-of-the-art of content analysis. Sponsored by SIG IAE, SIG ALP. Proceedings of the American Society for Information Science and Technology, 2005, 39, 463-463.	0.2	0
167	Differences over a decade: high tech capabilities and competitive performance of 28 nations. Research Evaluation, 2005, 14, 121-128.	2.6	11
168	Mining conference proceedings for corporate technology knowledge management. , 2005, , .		2
169	Technology futures analysis: Toward integration of the field and new methods. Technological Forecasting and Social Change, 2004, 71, 287-303.	11.6	285
170	The Education of a Technology Policy Analyst—to Process Management. Technology Analysis and Strategic Management, 2004, 16, 261-274.	3.5	18
171	Managers at Work: Get What You Need From Technology Information Products. Research Technology Management, 2004, 47, 16-19.	0.8	6
172	Patent Profiling for Competitive Advantage. , 2004, , 587-612.		12
173	R&D cluster quality measures and technology maturity. Technological Forecasting and Social Change, 2003, 70, 735-758.	11.6	42
174	Projects and publications: interesting patterns in US Environmental Protection Agency research. Research Evaluation, 2003, 12, 171-182.	2.6	3
175	Iraqi engineering: where has all the research gone?. Science and Public Policy, 2003, 30, 97-105.	2.4	5
176	A comparison of recent assessments of the high-tech competitiveness of nations. International Journal of Technology Management, 2002, 23, 536.	0.5	13
177	Measuring national â€~emerging technology' capabilities. Science and Public Policy, 2002, 29, 189-200.	2.4	67
178	Automated extraction and visualization of information for technological intelligence and forecasting. Technological Forecasting and Social Change, 2002, 69, 495-506.	11.6	174
179	Research profiling: Improving the literature review. Scientometrics, 2002, 53, 351-370.	3.0	156
180	Changes in National Technological Competitiveness: 1990, 1993, 1996 and 1999. Technology Analysis and Strategic Management, 2001, 13, 477-496.	3.5	23

#	Article	IF	CITATIONS
181	On the Future of Technological Forecasting. Technological Forecasting and Social Change, 2001, 67, 1-17.	11.6	160
182	Changes in National Technological Competitiveness: 1990, 1993, 1996 and 1999. Technology Analysis and Strategic Management, 2001, 13, 477-496.	3.5	2
183	Making Technology Foresight (and Systems Studies?) Useful. , 2001, , 173-179.		0
184	A process for mining science & technology documents databases, illustrated for the case of "knowledge discovery and data mining". Ciencia Da Informacao, 1999, 28, 07-14.	0.1	24
185	Tech forecasting an empirical perspective. Technological Forecasting and Social Change, 1999, 62, 19-28.	11.6	27
186	Depth perception. Technological Forecasting and Social Change, 1999, 62, 143-145.	11.6	2
187	Integrating environmental consequences and impact assessment into design processes and corporate strategy. Impact Assessment and Project Appraisal, 1999, 17, 141-145.	1.8	3
188	Innovation forecasting using bibliometrics. Competitive Intelligence Review, 1998, 9, 11-19.	0.1	28
189	Innovation forecasting. , 1997, , .		9
190	Innovation forecasting. Technological Forecasting and Social Change, 1997, 56, 25-47.	11.6	241
191	TOAS intelligence mining; analysis of natural language processing and computational linguistics. Lecture Notes in Computer Science, 1997, , 323-334.	1.3	6
192	Anticipating the future high-tech competitiveness of nations: Indicators for twenty-eight countries. Technological Forecasting and Social Change, 1996, 51, 133-149.	11.6	34
193	Electronics manufacturing in 2020: A national technological university management of technology mini-Delphi. Technological Forecasting and Social Change, 1996, 51, 185-194.	11.6	7
194	The information revolution: an introduction. Technology Analysis and Strategic Management, 1996, 8, 219-222.	3.5	0
195	Less labor, longer lives: time to share. Technology Analysis and Strategic Management, 1996, 8, 315-330.	3.5	0
196	Forecasting technological innovation. International Journal of Forecasting, 1995, 11, 493-494.	6.5	0
197	Technology opportunities analysis. Technological Forecasting and Social Change, 1995, 49, 237-255.	11.6	229
198	Virtual companies reconsidered. Technology Analysis and Strategic Management, 1993, 5, 413-420.	3.5	17

#	Article	IF	CITATIONS
199	The opening of the â€~nano-age'?. Science and Public Policy, 1993, 20, 361-362.	2.4	0
200	National capacities to absorb and institutionalize external science and technology. Technology Analysis and Strategic Management, 1992, 4, 99-114.	3.5	20
201	URBAN ECONOMIC DEVELOPMENT ON THE GRAND SCALE: IMPACT ASSESSMENT ISSUES FOR SHANGHAI'S PUDONG NEW AREA. Impact Assessment Bulletin, 1992, 10, 79-88.	0.3	0
202	A COMPARATIVE STUDY OF IMPACT ASSESSMENT METHODS IN DEVELOPED AND DEVELOPING COUNTRIES. Impact Assessment Bulletin, 1992, 10, 57-65.	0.3	12
203	Taming the future. International Journal of Forecasting, 1992, 8, 641-643.	6.5	2
204	MARKOV FORMULATION OF CROSS-IMPACT ANALYSIS FOR IMPACT ASSESSMENT AND FORECASTING. Impact Assessment Bulletin, 1991, 9, 55-74.	0.3	1
205	Expert systems: Present and future. Expert Systems With Applications, 1991, 3, 383-396.	7.6	5
206	Discretionary databases in forecasting. Journal of Forecasting, 1990, 9, 1-12.	2.8	7
207	Cross-impact analysis. Project Appraisal, 1990, 5, 186-188.	0.2	12
208	Preconditions for Interdisciplinary Research. , 1990, , 11-19.		10
209	An impact assessment perspective in research planning: the case of a research institute in China. Technology Analysis and Strategic Management, 1989, 1, 71-78.	3.5	0
210	IAIA: THE FIRST DECADE. Impact Assessment Bulletin, 1989, 7, 5-15.	0.3	1
211	Technological innovation and development: prospects for China. IEEE Transactions on Engineering Management, 1988, 35, 258-264.	3.5	5
212	Citations and scientific progress: Comparing bibliometric measures with scientist judgments. Scientometrics, 1988, 13, 103-124.	3.0	21
213	Trends in Computer Use in Industrial R&D. Research Technology Management, 1988, 31, 36-41.	0.8	2
214	A TWOâ€FACTOR MODEL OF THE EFFECTS OF OFFICE AUTOMATION ON EMPLOYMENT. Office Technology and People, 1987, 3, 57-76.	0.2	3
215	INTERNATIONAL IMPACTS OF TECHNOLOGY. Impact Assessment Bulletin, 1987, 5, 21-24.	0.3	1
216	INNOVATION AND IMPACT: THE INTRODUCTION OF MICROCOMPUTERS INTO BUSINESS IN CHINA. Impact Assessment Bulletin, 1987, 5, 57-69.	0.3	3

#	Article	IF	CITATIONS
217	Reducing earthquake risk: alternative policy processes. Project Appraisal, 1987, 2, 210-220.	0.2	3
218	R and D Project Selection and Evaluation: A Microcomputer-Based Approach. R and D Management, 1987, 17, 277-288.	5.3	5
219	IMPACT ASSESSMENT, FROM UTRECHT. Impact Assessment Bulletin, 1986, 4, 3-12.	0.3	0
220	Who's Using Computers in Industrial R&D—and for What. Research Technology Management, 1986, 29, 39-44.	0.1	4
221	A FORECAST OF OFFICE AUTOMATION TECHNOLOGY TO 2000. Impact Assessment Bulletin, 1986, 4, 81-97.	0.3	0
222	IMPACT ASSESSMENT TODAY, UTRECHT, 1986. Impact Assessment Bulletin, 1986, 5, 82-86.	0.3	0
223	A NEW FORM OF INDUSTRIALIZATION: MICROCOMPUTERS IN DEVELOPING COUNTRIES. Impact Assessment Bulletin, 1986, 4, 321-335.	0.3	0
224	Current and Future Uses of the Computer: Industrial R&D in the United States. R and D Management, 1986, 16, 279-289.	5.3	1
225	Multiskill Research. Knowledge, 1986, 7, 219-246.	0.6	5
226	An indicator of cross-disciplinary research. Scientometrics, 1985, 8, 161-176.	3.0	151
227	Peer Review of Interdisciplinary Research Proposals. Science Technology and Human Values, 1985, 10, 33-38.	3.1	73
228	Industrial robots $\hat{a} \in$ A strategic forecast using the technological delivery system approach. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15, 521-527.	0.9	4
229	EFTE: An interactive Delphi method. Technological Forecasting and Social Change, 1985, 28, 43-61.	11.6	44
230	"Citation classics―analysis: An approach to characterizing interdisciplinary research. Journal of the Association for Information Science and Technology, 1984, 35, 360-368.	1.0	28
231	Interdisciplinary research redefined: Multi-skill, problem-focussed research in the STRAP framework. R and D Management, 1984, 14, 105-111.	5.3	14
232	The ABCs of ABDs: A Study of Incomplete Doctorates. Improving College and University Teaching, 1983, 31, 74-81.	0.1	48
233	Interdisciplinary Research Current Experience in Policy and Performance. Interdisciplinary Science Reviews, 1983, 8, 158-167.	1.4	2
234	Interdisciplinary Research Current Experience in Policy and Performance. Interdisciplinary Science Reviews, 1983, 8, 158-167.	1.4	2

#	Article	IF	CITATIONS
235	Public Participation and Professionalism in Impact Assessment. Nonprofit and Voluntary Sector Quarterly, 1982, 11, 24-33.	0.2	4
236	Physicists and the doctoral dissertation. American Journal of Physics, 1982, 50, 822-828.	0.7	1
237	2004: A scenario of peer review in the future. Behavioral and Brain Sciences, 1982, 5, 233-234.	0.7	0
238	The Doctoral Dissertation in the Biosciences. BioScience, 1982, 32, 272-277.	4.9	1
239	Transportation funding structures and policies. Transportation Research Part A: Policy and Practice, 1981, 15, 139-153.	0.2	0
240	Integrated Impact Assessment. Interdisciplinary Science Reviews, 1981, 6, 346-354.	1.4	5
241	Misleading indicators: The limitations of multiple linear regression in formulation of policy recommendations. Policy Sciences, 1981, 13, 397-418.	2.8	12
242	Transit funding: Implications of federal aid strategies. Transportation, 1981, 10, 3-22.	4.0	0
243	Career Patterns of Scientists: A Case for Complementary Data. American Sociological Review, 1981, 46, 488.	5.2	33
244	Interdisciplinary Integration Within Technology A ssessments. Knowledge, 1981, 2, 503-528.	0.6	7
245	Technology Assessment/Environmental Impact Assessment: Toward Integrated Impact Assessment. IEEE Transactions on Systems, Man, and Cybernetics, 1980, 10, 417-424.	0.9	10
246	A user-focused model for the utilization of evaluation. Evaluation and Program Planning, 1980, 3, 131-140.	1.6	12
247	On the evaluation of assessment and assessments. Technological Forecasting and Social Change, 1979, 15, 73-76.	11.6	3
248	Experimental technology assessment: Explorations in processes of interdisciplinary team research. Technological Forecasting and Social Change, 1979, 15, 87-94.	11.6	11
249	Frameworks for integrating interdisciplinary research. Research Policy, 1979, 8, 70-79.	6.4	73
250	The role of information in perpetuating urban highway dominance over transit. Urban Systems, 1978, 3, 211-221.	0.1	0
251	Flexiweek. Business Horizons, 1978, 21, 45-51.	5.2	0
252	A comparison of the various ratings of psychology journals American Psychologist, 1978, 33, 295-299.	4.2	4

#	Article	IF	CITATIONS
253	A Framework for Comparison of Intensive and Special Probation Projects. International Journal of Comparative and Applied Criminal Justice, 1977, 1, 161-172.	0.9	0
254	Citation Analysis: Queries and Caveats. Social Studies of Science, 1977, 7, 257-267.	2.5	64
255	Evaluation designs for technology assessments and forecasts. Technological Forecasting and Social Change, 1977, 10, 369-380.	11.6	10
256	The Impacts of Snow Enhancement. Technology and Culture, 1976, 17, 594.	0.1	1
257	Use lists with caution American Psychologist, 1976, 31, 674-675.	4.2	15
258	Utility of the doctoral dissertation American Psychologist, 1975, 30, 1054-1061.	4.2	20
259	A recovery system for hyperbaric xenon. Medical & Biological Engineering, 1974, 12, 386-388.	0.4	0
260	Effects of non-hydrogen-bonding anesthetics on memory in the chick. Behavioral Biology, 1974, 10, 365-375.	2.2	27
261	An analytical review of the effects of non-hydrogen-bonding anesthetics on memory processing. Behavioral Biology, 1972, 7, 291-309.	2.2	25
262	Effect of stressful physical illness on future time perspective. Journal of Clinical Psychology, 1971, 27, 447-448.	1.9	5
263	High tech competitiveness: comparing 29 countries with a set of three indicators. , 0, , .		0
264	National indicators of technology-based competitiveness: selected results from 1996. , 0, , .		0
265	Technology opportunities analysis for Malaysia. , 0, , .		2
266	Mining foreign language information resources. , 0, , .		0
267	Requirements-based knowledge discovery for technology management. , 0, , .		1
268	Mining PICMET: 1997-2003 papers help you track management of technology developments. , 0, , .		9
269	Requirements-based knowledge discovery for technology management. , 0, , .		2