Le He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4559573/publications.pdf

Version: 2024-02-01

		53794	62596
106	6,721 citations	45	80
papers	citations	h-index	g-index
111	111	111	7953
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Stabilization of Exposed Metal Nanocrystals in Highâ€Temperature Heterogeneous Catalysis. Advanced Materials, 2022, 34, e2108727.	21.0	22
2	Improving Structural and Moisture Stability of P2-Layered Cathode Materials for Sodium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1252-1261.	5.1	21
3	Stable Cu Catalysts Supported by Twoâ€dimensional SiO ₂ with Strong Metal–Support Interaction. Advanced Science, 2022, 9, e2104972.	11.2	25
4	Wafer-Scale Fabrication of Silicon Nanocones via Controlling Catalyst Evolution in All-Wet Metal-Assisted Chemical Etching. ACS Omega, 2022, 7, 2234-2243.	3.5	7
5	Shear-induced alignment of low-aspect-ratio nanorods for modulations of multiple optical properties. Journal of Materials Chemistry C, 2022, 10, 9478-9483.	5.5	1
6	Allâ€Earthâ€Abundant Photothermal Silicon Platform for CO ₂ Catalysis with Nearly 100% Sunlight Harvesting Ability. Solar Rrl, 2021, 5, 2000387.	5.8	21
7	Co ₉ S ₈ Nanoparticles for Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 1776-1785.	5.0	33
8	Magnetic assembly and manipulation of Janus photonic crystal supraparticles from a colloidal mixture of spheres and ellipsoids. Journal of Materials Chemistry C, 2021, 9, 11788-11793.	5.5	8
9	Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO ₂ Photocatalysis. ACS Nano, 2021, 15, 5696-5705.	14.6	164
10	CO ₂ Footprint of Thermal Versus Photothermal CO ₂ Catalysis. Small, 2021, 17, e2007025.	10.0	35
11	A core-shell catalyst design boosts the performance of photothermal reverse water gas shift catalysis. Science China Materials, 2021, 64, 2212-2220.	6.3	21
12	Cobalt‧puttered Anodic Aluminum Oxide Membrane for Efficient Photothermal CO ₂ Hydrogenation. ChemNanoMat, 2021, 7, 1008-1012.	2.8	11
13	Greenhouse-inspired supra-photothermal CO2 catalysis. Nature Energy, 2021, 6, 807-814.	39.5	198
14	Emerging applications of MXene materials in CO2 photocatalysis. FlatChem, 2021, 28, 100252.	5.6	31
15	Editorial: Recent Advances in Responsive Optical Nanomaterials. Frontiers in Chemistry, 2021, 9, 760187.	3.6	1
16	Experimentally unveiling the origin of tunable selectivity for CO2 hydrogenation over Ni-based catalysts. Applied Catalysis B: Environmental, 2021, 292, 120191.	20.2	66
17	Ru-Catalyzed Reverse Water Gas Shift Reaction with Near-Unity Selectivity and Superior Stability., 2021, 3, 1652-1659.		24
18	Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO ₂ Reduction to Formate. Advanced Energy Materials, 2020, 10, 1902338.	19.5	384

#	Article	IF	Citations
19	Silica Nanocapsules with Unusual Shapes Accessed by Simultaneous Growth of the Template and Silica Nanostructure. Chemistry of Materials, 2020, 32, 575-581.	6.7	18
20	Design of magnetic nanoparticles with high magnetic separation efficiencies and durability for Cu ²⁺ adsorption. Nanotechnology, 2020, 31, 085710.	2.6	5
21	Photonic nanostructures of nanodiscs with multiple magneto-optical properties. Journal of Materials Chemistry C, 2020, 8, 16067-16072.	5.5	9
22	Cobalt Plasmonic Superstructures Enable Almost 100% Broadband Photon Efficient CO ₂ Photocatalysis. Advanced Materials, 2020, 32, e2000014.	21.0	109
23	Oxygen-producing catalase-based prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy. Acta Biomaterialia, 2020, 112, 234-249.	8.3	69
24	Solution–Liquid–Solid Growth and Catalytic Applications of Silica Nanorod Arrays. Advanced Science, 2020, 7, 2000310.	11.2	22
25	Enhancing photothermal CO2 catalysis by thermal insulating substrates. Rare Metals, 2020, 39, 881-886.	7.1	57
26	Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins. Nano Letters, 2020, 20, 2478-2485.	9.1	51
27	Ruthenium Nanoparticles Supported on Mg(OH) ₂ Microflowers as Catalysts for Photothermal Carbon Dioxide Hydrogenation. ACS Applied Nano Materials, 2020, 3, 3028-3033.	5.0	25
28	Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Materials Today, 2019, 24, 17-25.	14.2	98
29	Heterostructure Engineering of a Reverse Water Gas Shift Photocatalyst. Advanced Science, 2019, 6, 1902170.	11.2	20
30	Radioiodinated tyrosine based carbon dots with efficient renal clearance for single photon emission computed tomography of tumor. Nano Research, 2019, 12, 3037-3043.	10.4	14
31	A Step-by-Step Strategy for Controlled Preparations of Complex Heterostructured Colloids. Chemistry of Materials, 2019, 31, 9513-9521.	6.7	7
32	One-step growth of large-area silicon nanowire fabrics for high-performance multifunctional wearable sensors. Nano Research, 2019, 12, 2723-2728.	10.4	11
33	Salt-templated growth of monodisperse hollow nanostructures. Journal of Materials Chemistry A, 2019, 7, 1404-1409.	10.3	33
34	Oxygen Microbubble Generator Enabled by Tunable Catalytic Microtubes. Chemistry - an Asian Journal, 2019, 14, 2431-2434.	3.3	8
35	Singleâ€Stimulusâ€Induced Modulation of Multiple Optical Properties. Advanced Materials, 2019, 31, e1900388.	21.0	39
36	Rugby-ball-like photonic crystal supraparticles with non-close-packed structures and multiple magneto-optical responses. Journal of Materials Chemistry C, 2019, 7, 15042-15048.	5 . 5	15

#	Article	IF	Citations
37	Localâ€Curvatureâ€Controlled Nonâ€Epitaxial Growth of Hierarchical Nanostructures. Angewandte Chemie, 2018, 130, 3834-3838.	2.0	19
38	Photocatalytic Hydrogenation of Carbon Dioxide with High Selectivity to Methanol at Atmospheric Pressure. Joule, 2018, 2, 1369-1381.	24.0	148
39	Localâ€Curvatureâ€Controlled Nonâ€Epitaxial Growth of Hierarchical Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 3772-3776.	13.8	28
40	Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy. Nano Research, 2018, 11, 2796-2808.	10.4	41
41	Promoting Charge Separation in Semiconductor Nanocrystal Superstructures for Enhanced Photocatalytic Activity. Advanced Materials Interfaces, 2018, 5, 1701694.	3.7	33
42	A general and mild route to highly dispersible anisotropic magnetic colloids for sensing weak magnetic fields. Journal of Materials Chemistry C, 2018, 6, 5528-5535.	5.5	21
43	Tailoring Surface Frustrated Lewis Pairs of In ₂ O _{3â^3} <i>_{<i><lsub></lsub></i>OH)_y for Gasâ€Phase Heterogeneous Photocatalytic Reduction of CO₂ by Isomorphous Substitution of In³⁺ with Bi³⁺. Advanced Science. 2018. 5. 1700732.}</i>	11.2	91
44	A mechanistic study of silica-etching by hot water. Physical Chemistry Chemical Physics, 2018, 20, 1440-1446.	2.8	17
45	Anomalous effect of the aging degree on the ionic permeability of silica shells. RSC Advances, 2018, 8, 38499-38505.	3.6	4
46	Fully Alloying AuAg Nanorods in a Photothermal Nano-Oven: Superior Plasmonic Property and Enhanced Chemical Stability. ACS Omega, 2018, 3, 18623-18629.	3.5	10
47	Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angewandte Chemie - International Edition, 2018, 57, 12360-12364.	13.8	160
48	A general and facile approach to disperse hydrophobic nanocrystals in water with enhanced long-term stability. Journal of Materials Chemistry C, 2017, 5, 3065-3071.	5.5	9
49	Dispersing hydrophilic nanoparticles in nonaqueous solvents with superior long-term stability. RSC Advances, 2017, 7, 25535-25541.	3.6	8
50	Breath-Taking Patterns: Discontinuous Hydrophilic Regions for Photonic Crystal Beads Assembly and Patterns Revisualization. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38117-38124.	8.0	46
51	Centimeter-Long Single-Crystalline Si Nanowires. Nano Letters, 2017, 17, 7323-7329.	9.1	29
52	Carrier dynamics and the role of surface defects: Designing a photocatalyst for gas-phase CO ₂ reduction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8011-E8020.	7.1	89
53	Dye colour switching by hydride-terminated silicon particles and its application as an oxygen indicator. Journal of Materials Chemistry C, 2016, 4, 4577-4583.	5.5	9
54	The role of adsorption in photocatalytic degradation of ibuprofen under visible light irradiation by BiOBr microspheres. Chemical Engineering Journal, 2016, 297, 139-147.	12.7	73

#	Article	IF	CITATIONS
55	Spatial Separation of Charge Carriers in In ₂ O _{3â€"<i>x</i>} (OH) _{<i>y</i>} Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity. ACS Nano, 2016, 10, 5578-5586.	14.6	118
56	Visible and Nearâ€Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO ₂ over Nanostructured Pd@Nb ₂ O ₅ . Advanced Science, 2016, 3, 1600189.	11.2	133
57	Gram-scale synthesis of superparamagnetic Fe ₃ O ₄ nanocrystal clusters with long-term charge stability for highly stable magnetically responsive photonic crystals. Nanoscale, 2016, 8, 19036-19042.	5.6	29
58	Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals. Nature Communications, 2016, 7, 12553.	12.8	93
59	Effect of Precursor Selection on the Photocatalytic Performance of Indium Oxide Nanomaterials for Gas-Phase CO ₂ Reduction. Chemistry of Materials, 2016, 28, 4160-4168.	6.7	52
60	The diameter-dependent photoelectrochemical performance of silicon nanowires. Chemical Communications, 2016, 52, 1369-1372.	4.1	19
61	Formation of colloidal nanocrystal clusters of iron oxide by controlled ligand stripping. Chemical Communications, 2016, 52, 128-131.	4.1	17
62	Magnetic Assembly and Fieldâ€Tuning of Ellipsoidalâ€Nanoparticleâ€Based Colloidal Photonic Crystals. Angewandte Chemie, 2015, 127, 7183-7187.	2.0	5
63	Morphology-controlled In ₂ O ₃ nanostructures enhance the performance of photoelectrochemical water oxidation. Nanoscale, 2015, 7, 3683-3693.	5.6	37
64	Magnetically responsive photonic films with high tunability and stability. Nano Research, 2015, 8, $611-620$.	10.4	30
65	Magnetic Assembly and Fieldâ€Tuning of Ellipsoidalâ€Nanoparticleâ€Based Colloidal Photonic Crystals. Angewandte Chemie - International Edition, 2015, 54, 7077-7081.	13.8	135
66	Tuning the Colloidal Crystal Structure of Magnetic Particles by External Field. Angewandte Chemie - International Edition, 2015, 54, 1803-1807.	13.8	39
67	Magnetochromatic Thinâ€Film Microplates. Advanced Materials, 2015, 27, 86-92.	21.0	27
68	Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper. Nature Communications, 2014, 5, 5459.	12.8	183
69	Nanocrystalline TiO ₂ -Catalyzed Photoreversible Color Switching. Nano Letters, 2014, 14, 1681-1686.	9.1	90
70	Magnetically Actuated Liquid Crystals. Nano Letters, 2014, 14, 3966-3971.	9.1	125
71	Magnetic Tuning of Plasmonic Excitation of Gold Nanorods. Journal of the American Chemical Society, 2013, 135, 15302-15305.	13.7	98
72	Magnetically rewritable photonic ink based on superparamagnetic nanochains. Journal of Materials Chemistry C, 2013, 1, 6151.	5.5	58

#	Article	IF	Citations
73	Magnetic Assembly and Patterning of General Nanoscale Materials through Nonmagnetic Templates. Nano Letters, 2013, 13, 264-271.	9.1	46
74	Photonic Labyrinths: Two-Dimensional Dynamic Magnetic Assembly and <i>in Situ</i> Solidification. Nano Letters, 2013, 13, 1770-1775.	9.1	52
75	Magnetic field guided colloidal assembly. Materials Today, 2013, 16, 110-116.	14.2	192
76	Charge Stabilization of Superparamagnetic Colloids for Highâ€Performance Responsive Photonic Structures. Small, 2012, 8, 3795-3799.	10.0	38
77	Colloidal Crystallization and Structural Changes in Suspensions of Silica/Magnetite Core–Shell Nanoparticles. Langmuir, 2012, 28, 14777-14783.	3.5	46
78	Lithographic compartmentalization of emulsion droplet templates for microparticles with multiple nanostructured compartments. Chemical Communications, 2012, 48, 6091.	4.1	12
79	Determination of Solvation Layer Thickness by a Magnetophotonic Approach. ACS Nano, 2012, 6, 4196-4202.	14.6	44
80	Magnetic Assembly Route to Colloidal Responsive Photonic Nanostructures. Accounts of Chemical Research, 2012, 45, 1431-1440.	15.6	327
81	Thermoresponsive Assembly of Charged Gold Nanoparticles and Their Reversible Tuning of Plasmon Coupling. Angewandte Chemie - International Edition, 2012, 51, 6373-6377.	13.8	151
82	Self-assembly and magnetically induced phase transition of three-dimensional colloidal photonic crystals. Nanoscale, 2012, 4, 4438.	5.6	52
83	Monitoring the Shape Evolution of Silver Nanoplates: A Marker Study. Angewandte Chemie - International Edition, 2012, 51, 552-555.	13.8	63
84	Exploration of Possible Binding Sites of Nanoparticles on Protein by Cross-Linking Chemistry Coupled with Mass Spectrometry. Analytical Chemistry, 2011, 83, 6929-6934.	6.5	15
85	Magnetic field control of fluorescent polymer nanorods. Nanotechnology, 2011, 22, 455704.	2.6	6
86	Assembly and Photonic Properties of Superparamagnetic Colloids in Complex Magnetic Fields. Langmuir, 2011, 27, 13444-13450.	3.5	45
87	MAGNETICALLY TUNABLE COLLOIDAL PHOTONIC CRYSTALS. , 2011, , 1-35.		0
88	Magnetically induced colloidal assembly into field-responsive photonic structures. Nanoscale, 2011, 3, 177-183.	5.6	87
89	Realâ€Time Optofluidic Synthesis of Magnetochromatic Microspheres for Reversible Structural Color Patterning. Small, 2011, 7, 1163-1168.	10.0	54
90	Magnetochromatic Microspheres: Real-Time Optofluidic Synthesis of Magnetochromatic Microspheres for Reversible Structural Color Patterning (Small 9/2011). Small, 2011, 7, 1142-1142.	10.0	1

#	Article	IF	CITATIONS
91	Rý cktitelbild: Magnetically Responsive Photonic Nanochains (Angew. Chem. 16/2011). Angewandte Chemie, 2011, 123, 3900-3900.	2.0	0
92	Magnetically Responsive Photonic Nanochains. Angewandte Chemie - International Edition, 2011, 50, 3747-3750.	13.8	145
93	Back Cover: Magnetically Responsive Photonic Nanochains (Angew. Chem. Int. Ed. 16/2011). Angewandte Chemie - International Edition, 2011, 50, 3816-3816.	13.8	0
94	Magnetically responsive photonic nanostructures: making color using magnets., 2011,,.		2
95	Magnetically Recoverable Core–Shell Nanocomposites with Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2010, 16, 6243-6250.	3.3	310
96	Probing Nanoparticleâ^Protein Interaction by Capillary Electrophoresis. Analytical Chemistry, 2010, 82, 7460-7466.	6.5	82
97	Mesoporous TiO ₂ Nanocrystal Clusters for Selective Enrichment of Phosphopeptides. Analytical Chemistry, 2010, 82, 7249-7258.	6.5	114
98	Superparamagnetic Magnetite Nanoparticle Superstructures for Optical Modulation/Chopping. Journal of Physical Chemistry C, 2010, 114, 17868-17873.	3.1	7
99	Manipulating Graphene Mobility and Charge Neutral Point with Ligand-Bound Nanoparticles as Charge Reservoir. Nano Letters, 2010, 10, 4989-4993.	9.1	45
100	Magnetic Assembly of Nonmagnetic Particles into Photonic Crystal Structures. Nano Letters, 2010, 10, 4708-4714.	9.1	100
101	Epitaxial Growth of Shape-Controlled Bi ₂ Te ₃ â^'Te Heterogeneous Nanostructures. Journal of the American Chemical Society, 2010, 132, 17316-17324.	13.7	87
102	Superparamagnetic nanocrystal clusters for enrichment of low-abundance peptides and proteins. Chemical Communications, 2010, 46, 6174.	4.1	27
103	Self-assembly of superparamagnetic magnetite particles into peapod-like structures and their application in optical modulation. Journal of Materials Chemistry, 2010, 20, 7965.	6.7	55
104	Rewritable Photonic Paper with Hygroscopic Salt Solution as Ink. Advanced Materials, 2009, 21, 4259-4264.	21.0	232
105	Assembly of Magnetically Tunable Photonic Crystals in Nonpolar Solvents. Journal of the American Chemical Society, 2009, 131, 3484-3486.	13.7	172
106	Magnetochromatic Microspheres: Rotating Photonic Crystals. Journal of the American Chemical Society, 2009, 131, 15687-15694.	13.7	246