

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4559573/publications.pdf Version: 2024-02-01

I E HE

#	Article	IF	CITATIONS
1	Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO ₂ Reduction to Formate. Advanced Energy Materials, 2020, 10, 1902338.	19.5	384
2	Magnetic Assembly Route to Colloidal Responsive Photonic Nanostructures. Accounts of Chemical Research, 2012, 45, 1431-1440.	15.6	327
3	Magnetically Recoverable Core–Shell Nanocomposites with Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2010, 16, 6243-6250.	3.3	310
4	Magnetochromatic Microspheres: Rotating Photonic Crystals. Journal of the American Chemical Society, 2009, 131, 15687-15694.	13.7	246
5	Rewritable Photonic Paper with Hygroscopic Salt Solution as Ink. Advanced Materials, 2009, 21, 4259-4264.	21.0	232
6	Greenhouse-inspired supra-photothermal CO2 catalysis. Nature Energy, 2021, 6, 807-814.	39.5	198
7	Magnetic field guided colloidal assembly. Materials Today, 2013, 16, 110-116.	14.2	192
8	Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper. Nature Communications, 2014, 5, 5459.	12.8	183
9	Assembly of Magnetically Tunable Photonic Crystals in Nonpolar Solvents. Journal of the American Chemical Society, 2009, 131, 3484-3486.	13.7	172
10	Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO ₂ Photocatalysis. ACS Nano, 2021, 15, 5696-5705.	14.6	164
11	Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angewandte Chemie - International Edition, 2018, 57, 12360-12364.	13.8	160
12	Thermoresponsive Assembly of Charged Gold Nanoparticles and Their Reversible Tuning of Plasmon Coupling. Angewandte Chemie - International Edition, 2012, 51, 6373-6377.	13.8	151
13	Photocatalytic Hydrogenation of Carbon Dioxide with High Selectivity to Methanol at Atmospheric Pressure. Joule, 2018, 2, 1369-1381.	24.0	148
14	Magnetically Responsive Photonic Nanochains. Angewandte Chemie - International Edition, 2011, 50, 3747-3750.	13.8	145
15	Magnetic Assembly and Fieldâ€Tuning of Ellipsoidalâ€Nanoparticleâ€Based Colloidal Photonic Crystals. Angewandte Chemie - International Edition, 2015, 54, 7077-7081.	13.8	135
16	Visible and Nearâ€Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO ₂ over Nanostructured Pd@Nb ₂ O ₅ . Advanced Science, 2016, 3, 1600189.	11.2	133
17	Magnetically Actuated Liquid Crystals. Nano Letters, 2014, 14, 3966-3971.	9.1	125
18	Spatial Separation of Charge Carriers in In ₂ O _{3–<i>x</i>} (OH) _{<i>y</i>} Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity. ACS Nano, 2016, 10, 5578-5586.	14.6	118

#	Article	IF	CITATIONS
19	Mesoporous TiO ₂ Nanocrystal Clusters for Selective Enrichment of Phosphopeptides. Analytical Chemistry, 2010, 82, 7249-7258.	6.5	114
20	Cobalt Plasmonic Superstructures Enable Almost 100% Broadband Photon Efficient CO ₂ Photocatalysis. Advanced Materials, 2020, 32, e2000014.	21.0	109
21	Magnetic Assembly of Nonmagnetic Particles into Photonic Crystal Structures. Nano Letters, 2010, 10, 4708-4714.	9.1	100
22	Magnetic Tuning of Plasmonic Excitation of Gold Nanorods. Journal of the American Chemical Society, 2013, 135, 15302-15305.	13.7	98
23	Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Materials Today, 2019, 24, 17-25.	14.2	98
24	Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals. Nature Communications, 2016, 7, 12553.	12.8	93
25	Tailoring Surface Frustrated Lewis Pairs of In ₂ O _{3â^} <i>_x</i> (OH) _y for Gasâ€Phase Heterogeneous Photocatalytic Reduction of CO ₂ by Isomorphous Substitution of In ³⁺ with Bi ³⁺ . Advanced Science. 2018. 5. 1700732.	11.2	91
26	Nanocrystalline TiO ₂ -Catalyzed Photoreversible Color Switching. Nano Letters, 2014, 14, 1681-1686.	9.1	90
27	Carrier dynamics and the role of surface defects: Designing a photocatalyst for gas-phase CO ₂ reduction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8011-E8020.	7.1	89
28	Epitaxial Growth of Shape-Controlled Bi ₂ Te ₃ â^'Te Heterogeneous Nanostructures. Journal of the American Chemical Society, 2010, 132, 17316-17324.	13.7	87
29	Magnetically induced colloidal assembly into field-responsive photonic structures. Nanoscale, 2011, 3, 177-183.	5.6	87
30	Probing Nanoparticleâ^'Protein Interaction by Capillary Electrophoresis. Analytical Chemistry, 2010, 82, 7460-7466.	6.5	82
31	The role of adsorption in photocatalytic degradation of ibuprofen under visible light irradiation by BiOBr microspheres. Chemical Engineering Journal, 2016, 297, 139-147.	12.7	73
32	Oxygen-producing catalase-based prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy. Acta Biomaterialia, 2020, 112, 234-249.	8.3	69
33	Experimentally unveiling the origin of tunable selectivity for CO2 hydrogenation over Ni-based catalysts. Applied Catalysis B: Environmental, 2021, 292, 120191.	20.2	66
34	Monitoring the Shape Evolution of Silver Nanoplates: A Marker Study. Angewandte Chemie - International Edition, 2012, 51, 552-555.	13.8	63
35	Magnetically rewritable photonic ink based on superparamagnetic nanochains. Journal of Materials Chemistry C, 2013, 1, 6151.	5.5	58
36	Enhancing photothermal CO2 catalysis by thermal insulating substrates. Rare Metals, 2020, 39, 881-886.	7.1	57

#	Article	IF	CITATIONS
37	Self-assembly of superparamagnetic magnetite particles into peapod-like structures and their application in optical modulation. Journal of Materials Chemistry, 2010, 20, 7965.	6.7	55
38	Realâ€Time Optofluidic Synthesis of Magnetochromatic Microspheres for Reversible Structural Color Patterning. Small, 2011, 7, 1163-1168.	10.0	54
39	Self-assembly and magnetically induced phase transition of three-dimensional colloidal photonic crystals. Nanoscale, 2012, 4, 4438.	5.6	52
40	Photonic Labyrinths: Two-Dimensional Dynamic Magnetic Assembly and <i>in Situ</i> Solidification. Nano Letters, 2013, 13, 1770-1775.	9.1	52
41	Effect of Precursor Selection on the Photocatalytic Performance of Indium Oxide Nanomaterials for Gas-Phase CO ₂ Reduction. Chemistry of Materials, 2016, 28, 4160-4168.	6.7	52
42	Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins. Nano Letters, 2020, 20, 2478-2485.	9.1	51
43	Colloidal Crystallization and Structural Changes in Suspensions of Silica/Magnetite Core–Shell Nanoparticles. Langmuir, 2012, 28, 14777-14783.	3.5	46
44	Magnetic Assembly and Patterning of General Nanoscale Materials through Nonmagnetic Templates. Nano Letters, 2013, 13, 264-271.	9.1	46
45	Breath-Taking Patterns: Discontinuous Hydrophilic Regions for Photonic Crystal Beads Assembly and Patterns Revisualization. ACS Applied Materials & Interfaces, 2017, 9, 38117-38124.	8.0	46
46	Manipulating Graphene Mobility and Charge Neutral Point with Ligand-Bound Nanoparticles as Charge Reservoir. Nano Letters, 2010, 10, 4989-4993.	9.1	45
47	Assembly and Photonic Properties of Superparamagnetic Colloids in Complex Magnetic Fields. Langmuir, 2011, 27, 13444-13450.	3.5	45
48	Determination of Solvation Layer Thickness by a Magnetophotonic Approach. ACS Nano, 2012, 6, 4196-4202.	14.6	44
49	Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy. Nano Research, 2018, 11, 2796-2808.	10.4	41
50	Tuning the Colloidal Crystal Structure of Magnetic Particles by External Field. Angewandte Chemie - International Edition, 2015, 54, 1803-1807.	13.8	39
51	Single‧timulusâ€Induced Modulation of Multiple Optical Properties. Advanced Materials, 2019, 31, e1900388.	21.0	39
52	Charge Stabilization of Superparamagnetic Colloids for Highâ€Performance Responsive Photonic Structures. Small, 2012, 8, 3795-3799.	10.0	38
53	Morphology-controlled In ₂ O ₃ nanostructures enhance the performance of photoelectrochemical water oxidation. Nanoscale, 2015, 7, 3683-3693.	5.6	37
54	CO ₂ Footprint of Thermal Versus Photothermal CO ₂ Catalysis. Small, 2021, 17, e2007025.	10.0	35

#	Article	IF	CITATIONS
55	Promoting Charge Separation in Semiconductor Nanocrystal Superstructures for Enhanced Photocatalytic Activity. Advanced Materials Interfaces, 2018, 5, 1701694.	3.7	33
56	Salt-templated growth of monodisperse hollow nanostructures. Journal of Materials Chemistry A, 2019, 7, 1404-1409.	10.3	33
57	Co ₉ S ₈ Nanoparticles for Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 1776-1785.	5.0	33
58	Emerging applications of MXene materials in CO2 photocatalysis. FlatChem, 2021, 28, 100252.	5.6	31
59	Magnetically responsive photonic films with high tunability and stability. Nano Research, 2015, 8, 611-620.	10.4	30
60	Gram-scale synthesis of superparamagnetic Fe ₃ O ₄ nanocrystal clusters with long-term charge stability for highly stable magnetically responsive photonic crystals. Nanoscale, 2016, 8, 19036-19042.	5.6	29
61	Centimeter-Long Single-Crystalline Si Nanowires. Nano Letters, 2017, 17, 7323-7329.	9.1	29
62	Local urvature ontrolled Nonâ€Epitaxial Growth of Hierarchical Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 3772-3776.	13.8	28
63	Superparamagnetic nanocrystal clusters for enrichment of low-abundance peptides and proteins. Chemical Communications, 2010, 46, 6174.	4.1	27
64	Magnetochromatic Thinâ€Film Microplates. Advanced Materials, 2015, 27, 86-92.	21.0	27
65	Ruthenium Nanoparticles Supported on Mg(OH) ₂ Microflowers as Catalysts for Photothermal Carbon Dioxide Hydrogenation. ACS Applied Nano Materials, 2020, 3, 3028-3033.	5.0	25
66	Stable Cu Catalysts Supported by Twoâ€dimensional SiO ₂ with Strong Metal–Support Interaction. Advanced Science, 2022, 9, e2104972.	11.2	25
67	Ru-Catalyzed Reverse Water Gas Shift Reaction with Near-Unity Selectivity and Superior Stability. , 2021, 3, 1652-1659.		24
68	Solution–Liquid–Solid Growth and Catalytic Applications of Silica Nanorod Arrays. Advanced Science, 2020, 7, 2000310.	11.2	22
69	Stabilization of Exposed Metal Nanocrystals in Highâ€Temperature Heterogeneous Catalysis. Advanced Materials, 2022, 34, e2108727.	21.0	22
70	A general and mild route to highly dispersible anisotropic magnetic colloids for sensing weak magnetic fields. Journal of Materials Chemistry C, 2018, 6, 5528-5535.	5.5	21
71	Allâ€Earthâ€Abundant Photothermal Silicon Platform for CO ₂ Catalysis with Nearly 100% Sunlight Harvesting Ability. Solar Rrl, 2021, 5, 2000387.	5.8	21
72	A core-shell catalyst design boosts the performance of photothermal reverse water gas shift catalysis. Science China Materials, 2021, 64, 2212-2220.	6.3	21

#	Article	IF	CITATIONS
73	Improving Structural and Moisture Stability of P2-Layered Cathode Materials for Sodium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1252-1261.	5.1	21
74	Heterostructure Engineering of a Reverse Water Gas Shift Photocatalyst. Advanced Science, 2019, 6, 1902170.	11.2	20
75	The diameter-dependent photoelectrochemical performance of silicon nanowires. Chemical Communications, 2016, 52, 1369-1372.	4.1	19
76	Local urvature ontrolled Nonâ€Epitaxial Growth of Hierarchical Nanostructures. Angewandte Chemie, 2018, 130, 3834-3838.	2.0	19
77	Silica Nanocapsules with Unusual Shapes Accessed by Simultaneous Growth of the Template and Silica Nanostructure. Chemistry of Materials, 2020, 32, 575-581.	6.7	18
78	Formation of colloidal nanocrystal clusters of iron oxide by controlled ligand stripping. Chemical Communications, 2016, 52, 128-131.	4.1	17
79	A mechanistic study of silica-etching by hot water. Physical Chemistry Chemical Physics, 2018, 20, 1440-1446.	2.8	17
80	Exploration of Possible Binding Sites of Nanoparticles on Protein by Cross-Linking Chemistry Coupled with Mass Spectrometry. Analytical Chemistry, 2011, 83, 6929-6934.	6.5	15
81	Rugby-ball-like photonic crystal supraparticles with non-close-packed structures and multiple magneto-optical responses. Journal of Materials Chemistry C, 2019, 7, 15042-15048.	5.5	15
82	Radioiodinated tyrosine based carbon dots with efficient renal clearance for single photon emission computed tomography of tumor. Nano Research, 2019, 12, 3037-3043.	10.4	14
83	Lithographic compartmentalization of emulsion droplet templates for microparticles with multiple nanostructured compartments. Chemical Communications, 2012, 48, 6091.	4.1	12
84	One-step growth of large-area silicon nanowire fabrics for high-performance multifunctional wearable sensors. Nano Research, 2019, 12, 2723-2728.	10.4	11
85	Cobaltâ€ S puttered Anodic Aluminum Oxide Membrane for Efficient Photothermal CO ₂ Hydrogenation. ChemNanoMat, 2021, 7, 1008-1012.	2.8	11
86	Fully Alloying AuAg Nanorods in a Photothermal Nano-Oven: Superior Plasmonic Property and Enhanced Chemical Stability. ACS Omega, 2018, 3, 18623-18629.	3.5	10
87	Dye colour switching by hydride-terminated silicon particles and its application as an oxygen indicator. Journal of Materials Chemistry C, 2016, 4, 4577-4583.	5.5	9
88	A general and facile approach to disperse hydrophobic nanocrystals in water with enhanced long-term stability. Journal of Materials Chemistry C, 2017, 5, 3065-3071.	5.5	9
89	Photonic nanostructures of nanodiscs with multiple magneto-optical properties. Journal of Materials Chemistry C, 2020, 8, 16067-16072.	5.5	9
90	Dispersing hydrophilic nanoparticles in nonaqueous solvents with superior long-term stability. RSC Advances, 2017, 7, 25535-25541.	3.6	8

#	Article	IF	CITATIONS
91	Oxygen Microbubble Generator Enabled by Tunable Catalytic Microtubes. Chemistry - an Asian Journal, 2019, 14, 2431-2434.	3.3	8
92	Magnetic assembly and manipulation of Janus photonic crystal supraparticles from a colloidal mixture of spheres and ellipsoids. Journal of Materials Chemistry C, 2021, 9, 11788-11793.	5.5	8
93	Superparamagnetic Magnetite Nanoparticle Superstructures for Optical Modulation/Chopping. Journal of Physical Chemistry C, 2010, 114, 17868-17873.	3.1	7
94	A Step-by-Step Strategy for Controlled Preparations of Complex Heterostructured Colloids. Chemistry of Materials, 2019, 31, 9513-9521.	6.7	7
95	Wafer-Scale Fabrication of Silicon Nanocones via Controlling Catalyst Evolution in All-Wet Metal-Assisted Chemical Etching. ACS Omega, 2022, 7, 2234-2243.	3.5	7
96	Magnetic field control of fluorescent polymer nanorods. Nanotechnology, 2011, 22, 455704.	2.6	6
97	Magnetic Assembly and Fieldâ€īuning of Ellipsoidalâ€Nanoparticleâ€Based Colloidal Photonic Crystals. Angewandte Chemie, 2015, 127, 7183-7187.	2.0	5
98	Design of magnetic nanoparticles with high magnetic separation efficiencies and durability for Cu ²⁺ adsorption. Nanotechnology, 2020, 31, 085710.	2.6	5
99	Anomalous effect of the aging degree on the ionic permeability of silica shells. RSC Advances, 2018, 8, 38499-38505.	3.6	4
100	Magnetically responsive photonic nanostructures: making color using magnets. , 2011, , .		2
101	Magnetochromatic Microspheres: Real-Time Optofluidic Synthesis of Magnetochromatic Microspheres for Reversible Structural Color Patterning (Small 9/2011). Small, 2011, 7, 1142-1142.	10.0	1
102	Editorial: Recent Advances in Responsive Optical Nanomaterials. Frontiers in Chemistry, 2021, 9, 760187.	3.6	1
103	Shear-induced alignment of low-aspect-ratio nanorods for modulations of multiple optical properties. Journal of Materials Chemistry C, 2022, 10, 9478-9483.	5.5	1
104	MAGNETICALLY TUNABLE COLLOIDAL PHOTONIC CRYSTALS. , 2011, , 1-35.		0
105	Rücktitelbild: Magnetically Responsive Photonic Nanochains (Angew. Chem. 16/2011). Angewandte Chemie, 2011, 123, 3900-3900.	2.0	0
106	Back Cover: Magnetically Responsive Photonic Nanochains (Angew. Chem. Int. Ed. 16/2011). Angewandte Chemie - International Edition, 2011, 50, 3816-3816.	13.8	0