
Sandra K Weller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4559379/publications.pdf Version: 2024-02-01

SANDDA K WELLED

#	Article	IF	CITATIONS
1	Two-Metal Ion-Dependent Enzymes as Potential Antiviral Targets in Human Herpesviruses. MBio, 2022, , e0322621.	1.8	4
2	Viral Nucleases from Herpesviruses and Coronavirus in Recombination and Proofreading: Potential Targets for Antiviral Drug Discovery. Viruses, 2022, 14, 1557.	1.5	1
3	New model integrates innate responses, PMLâ€NB formation, epigenetic control and reactivation from latency. EMBO Reports, 2021, 22, e53496.	2.0	2
4	DNA Damage Kills Bacterial Spores and Cells Exposed to 222-Nanometer UV Radiation. Applied and Environmental Microbiology, 2020, 86, .	1.4	51
5	The Herpes Simplex Virus 1 Immediate Early Protein ICP22 Is a Functional Mimic of a Cellular J Protein. Journal of Virology, 2020, 94, .	1.5	15
6	The Herpes Simplex Viruses Utilize a Recombinationâ€Dependent Replication Mechanism to Replicate Viral Genomes. FASEB Journal, 2020, 34, 1-1.	0.2	0
7	Herpes simplex virus 1 ICP8 mutant lacking annealing activity is deficient for viral DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1033-1042.	3.3	27
8	Viral Proteins U41 and U70 of Human Herpesvirus 6A Are Dispensable for Telomere Integration. Viruses, 2018, 10, 656.	1.5	18
9	The Exonuclease Activity of Herpes Simplex Virus 1 UL12 Is Required for Production of Viral DNA That Can Be Packaged To Produce Infectious Virus. Journal of Virology, 2017, 91, .	1.5	26
10	The UL8 subunit of the helicase–primase complex of herpes simplex virus promotes DNA annealing and has a high affinity for replication forks. Journal of Biological Chemistry, 2017, 292, 15611-15621.	1.6	4
11	An Intrinsically Disordered Region of the DNA Repair Protein Nbs1 Is a Species-Specific Barrier to Herpes Simplex Virus 1 in Primates. Cell Host and Microbe, 2016, 20, 178-188.	5.1	33
12	ICP8 Filament Formation Is Essential for Replication Compartment Formation during Herpes Simplex Virus Infection. Journal of Virology, 2016, 90, 2561-2570.	1.5	24
13	HSV Cheats the Executioner. Cell Host and Microbe, 2015, 17, 148-151.	5.1	5
14	HSV-I and the cellular DNA damage response. Future Virology, 2015, 10, 383-397.	0.9	42
15	The Putative Herpes Simplex Virus 1 Chaperone Protein UL32 Modulates Disulfide Bond Formation during Infection. Journal of Virology, 2015, 89, 443-453.	1.5	31
16	Structural Characterization of Interaction between Human Ubiquitin-specific Protease 7 and Immediate-Early Protein ICPO of Herpes Simplex Virus-1. Journal of Biological Chemistry, 2015, 290, 22907-22918.	1.6	34
17	Structure of the Herpes Simplex Virus 1 Genome: Manipulation of Nicks and Gaps Can Abrogate Infectivity and Alter the Cellular DNA Damage Response. Journal of Virology, 2014, 88, 10146-10156.	1.5	45
18	Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus. Annual Review of Microbiology, 2014, 68, 237-258.	2.9	44

#	Article	IF	CITATIONS
19	HSV-1 Protein Expression Using Recombinant Baculoviruses. Methods in Molecular Biology, 2014, 1144, 293-304.	0.4	3
20	The DNA helicase–primase complex as a target for herpes viral infection. Expert Opinion on Therapeutic Targets, 2013, 17, 1119-1132.	1.5	34
21	Efficient Herpes Simplex Virus 1 Replication Requires Cellular ATR Pathway Proteins. Journal of Virology, 2013, 87, 531-542.	1.5	35
22	Herpes Simplex Virus Type 1 Single Strand DNA Binding Protein and Helicase/Primase Complex Disable Cellular ATR Signaling. PLoS Pathogens, 2013, 9, e1003652.	2.1	24
23	Herpes Simplex Virus type 1 replication proteins disable ATR signaling by binding to substrates that would normally recruit 9–1â€1 and topBP1 to activate ATR. FASEB Journal, 2013, 27, .	0.2	0
24	The HSV-1 Exonuclease, UL12, Stimulates Recombination by a Single Strand Annealing Mechanism. PLoS Pathogens, 2012, 8, e1002862.	2.1	80
25	Herpes Simplex Viruses: Mechanisms of DNA Replication. Cold Spring Harbor Perspectives in Biology, 2012, 4, a013011-a013011.	2.3	176
26	Herpes Simplex Virus: Manipulating DNA Damage Response Pathways. FASEB Journal, 2012, 26, 932.2.	0.2	1
27	Disulfide Bond Formation in the Herpes Simplex Virus 1 UL6 Protein Is Required for Portal Ring Formation and Genome Encapsidation. Journal of Virology, 2011, 85, 8616-8624.	1.5	25
28	DNA Mismatch Repair Proteins Are Required for Efficient Herpes Simplex Virus 1 Replication. Journal of Virology, 2011, 85, 12241-12253.	1.5	42
29	Disulfide Bond Formation Contributes to Herpes Simplex Virus Capsid Stability and Retention of Pentons. Journal of Virology, 2011, 85, 8625-8634.	1.5	20
30	Herpes Simplex Virus Type 1 Helicase-Primase: DNA Binding and Consequent Protein Oligomerization and Primase Activation. Journal of Virology, 2011, 85, 968-978.	1.5	23
31	Physical Interaction between the Herpes Simplex Virus Type 1 Exonuclease, UL12, and the DNA Double-Strand Break-Sensing MRN Complex. Journal of Virology, 2010, 84, 12504-12514.	1.5	60
32	Herpes Simplex Virus Type 1 Immediate-Early Protein ICP22 Is Required for VICE Domain Formation during Productive Viral Infection. Journal of Virology, 2010, 84, 2384-2394.	1.5	42
33	Identification of Rep-Associated Factors in Herpes Simplex Virus Type 1-Induced Adeno-Associated Virus Type 2 Replication Compartments. Journal of Virology, 2010, 84, 8871-8887.	1.5	22
34	Herpes Simplex Virus Reorganizes the Cellular DNA Repair and Protein Quality Control Machinery. PLoS Pathogens, 2010, 6, e1001105.	2.1	21
35	ATR and ATRIP Are Recruited to Herpes Simplex Virus Type 1 Replication Compartments Even though ATR Signaling Is Disabled. Journal of Virology, 2010, 84, 12152-12164.	1.5	46
36	Virus-Induced Chaperone-Enriched (VICE) Domains Function as Nuclear Protein Quality Control Centers during HSV-1 Infection. PLoS Pathogens, 2009, 5, e1000619.	2.1	66

#	Article	IF	CITATIONS
37	Herpesvirus Genome Replication. , 2009, , 249-265.		2
38	Oligomerization of ICP4 and Rearrangement of Heat Shock Proteins May Be Important for Herpes Simplex Virus Type 1 Prereplicative Site Formation. Journal of Virology, 2008, 82, 6324-6336.	1.5	48
39	Direct Interaction between the N- and C-Terminal Portions of the Herpes Simplex Virus Type 1 Origin Binding Protein UL9 Implies the Formation of a Head-to-Tail Dimer. Journal of Virology, 2007, 81, 13659-13667.	1.5	10
40	A Putative Leucine Zipper within the Herpes Simplex Virus Type 1 UL6 Protein Is Required for Portal Ring Formation. Journal of Virology, 2007, 81, 8868-8877.	1.5	21
41	Enhanced Phosphorylation of Transcription Factor Sp1 in Response to Herpes Simplex Virus Type 1 Infection Is Dependent on the Ataxia Telangiectasia-Mutated Protein. Journal of Virology, 2007, 81, 9653-9664.	1.5	28
42	A Mutation in the Human Herpes Simplex Virus Type 1 UL52 Zinc Finger Motif Results in Defective Primase Activity but Can Recruit Viral Polymerase and Support Viral Replication Efficiently. Journal of Virology, 2007, 81, 8742-8751.	1.5	14
43	Herpes simplex virus eliminates host mitochondrial DNA. EMBO Reports, 2007, 8, 188-193.	2.0	121
44	The two helicases of herpes simplex virus type 1 (HSV-1). Frontiers in Bioscience - Landmark, 2006, 11, 2213.	3.0	25
45	Herpes simplex virus type I disrupts the ATR-dependent DNA-damage response during lytic infection. Journal of Cell Science, 2006, 119, 2695-2703.	1.2	90
46	DNA Binding Activity of the Herpes Simplex Virus Type 1 Origin Binding Protein, UL9, Can Be Modulated by Sequences in the N Terminus: Correlation between Transdominance and DNA Binding. Journal of Virology, 2006, 80, 4491-4500.	1.5	13
47	Beta interferon and gamma interferon synergize to block viral DNA and virion synthesis in herpes simplex virus-infected cells. Journal of General Virology, 2005, 86, 2421-2432.	1.3	41
48	Mutations in the Putative Zinc-Binding Motif of UL52 Demonstrate a Complex Interdependence between the UL5 and UL52 Subunits of the Human Herpes Simplex Virus Type 1 Helicase/Primase Complex. Journal of Virology, 2005, 79, 9088-9096.	1.5	34
49	Inhibition of the Herpes Simplex Virus Type 1 DNA Polymerase Induces Hyperphosphorylation of Replication Protein A and Its Accumulation at S-Phase-Specific Sites of DNA Damage during Infection. Journal of Virology, 2005, 79, 7162-7171.	1.5	19
50	Herpes Simplex Virus Type 1 Single-Strand DNA Binding Protein ICP8 Enhances the Nuclease Activity of the UL12 Alkaline Nuclease by Increasing Its Processivity. Journal of Virology, 2005, 79, 9356-9358.	1.5	20
51	Herpes Simplex Virus Type 1 DNA Polymerase Requires the Mammalian Chaperone Hsp90 for Proper Localization to the Nucleus. Journal of Virology, 2005, 79, 10740-10749.	1.5	124
52	Cleavage and Packaging of Herpes Simplex Virus 1 DNA. , 2005, , 135-150.		28
53	Nuclear Sequestration of Cellular Chaperone and Proteasomal Machinery during Herpes Simplex Virus Type 1 Infection. Journal of Virology, 2004, 78, 7175-7185.	1.5	94
54	The Rep Protein of Adeno-Associated Virus Type 2 Interacts with Single-Stranded DNA-Binding Proteins That Enhance Viral Replication. Journal of Virology, 2004, 78, 441-453.	1.5	60

#	Article	IF	CITATIONS
55	The UL12.5 Gene Product of Herpes Simplex Virus Type 1 Exhibits Nuclease and Strand Exchange Activities but Does Not Localize to the Nucleus. Journal of Virology, 2004, 78, 4599-4608.	1.5	47
56	Recruitment of Cellular Recombination and Repair Proteins to Sites of Herpes Simplex Virus Type 1 DNA Replication Is Dependent on the Composition of Viral Proteins within Prereplicative Sites and Correlates with the Induction of the DNA Damage Response. Journal of Virology, 2004, 78, 4783-4796.	1.5	157
57	Catalysis of Strand Exchange by the HSV-1 UL12 and ICP8 Proteins: Potent ICP8 Recombinase Activity is Revealed upon Resection of dsDNA Substrate by Nuclease. Journal of Molecular Biology, 2004, 342, 57-71.	2.0	60
58	The Role of DNA Recombination in Herpes Simplex Virus DNA Replication. IUBMB Life, 2003, 55, 451-458.	1.5	108
59	Point Mutations in Exon I of the Herpes Simplex Virus Putative Terminase Subunit, UL15, Indicate that the Most Conserved Residues Are Essential for Cleavage and Packaging. Journal of Virology, 2003, 77, 9613-9621.	1.5	41
60	Recruitment of Polymerase to Herpes Simplex Virus Type 1 Replication Foci in Cells Expressing Mutant Primase (UL52) Proteins. Journal of Virology, 2003, 77, 4237-4247.	1.5	36
61	Existence of Transdominant and Potentiating Mutants of UL9, the Herpes Simplex Virus Type 1 Origin-Binding Protein, Suggests that Levels of UL9 Protein May Be Regulated during Infection. Journal of Virology, 2003, 77, 9639-9651.	1.5	14
62	Helicase Motif Ia Is Involved in Single-Strand DNA-Binding and Helicase Activities of the Herpes Simplex Virus Type 1 Origin-Binding Protein, UL9. Journal of Virology, 2003, 77, 2477-2488.	1.5	22
63	The Herpes Simplex Virus Type 1 Alkaline Nuclease and Single-Stranded DNA Binding Protein Mediate Strand Exchange In Vitro. Journal of Virology, 2003, 77, 7425-7433.	1.5	102
64	The Product of the UL12.5 Gene of Herpes Simplex Virus Type 1 Is Not Essential for Lytic Viral Growth and Is Not Specifically Associated with Capsids. Virology, 2002, 298, 248-257.	1.1	12
65	The UL6 Gene Product Forms the Portal for Entry of DNA into the Herpes Simplex Virus Capsid. Journal of Virology, 2001, 75, 10923-10932.	1.5	273
66	The UL5 and UL52 Subunits of the Herpes Simplex Virus Type 1 Helicase-Primase Subcomplex Exhibit a Complex Interdependence for DNA Binding. Journal of Biological Chemistry, 2001, 276, 17610-17619.	1.6	22
67	Residues within the Conserved Helicase Motifs of UL9, the Origin-binding Protein of Herpes Simplex Virus-1, Are Essential for Helicase Activity but Not for Dimerization or Origin Binding Activity. Journal of Biological Chemistry, 2001, 276, 6605-6615.	1.6	25
68	Interactions of Herpes Simplex Virus Type 1 with ND10 and Recruitment of PML to Replication Compartments. Journal of Virology, 2001, 75, 2353-2367.	1.5	58
69	Herpes Simplex Virus DNA Cleavage and Packaging Proteins Associate with the Procapsid prior to Its Maturation. Journal of Virology, 2001, 75, 687-698.	1.5	120
70	A tale of two HSV-1 helicases: Roles of phage and animal virus helicases in DNA replication and recombination. Progress in Molecular Biology and Translational Science, 2001, 70, 77-118.	1.9	38
71	Isolation of Herpes Simplex Virus Procapsids from Cells Infected with a Protease-Deficient Mutant Virus. Journal of Virology, 2000, 74, 1663-1673.	1.5	115
72	Evidence for Controlled Incorporation of Herpes Simplex Virus Type 1 UL26 Protease into Capsids. Journal of Virology, 2000, 74, 6838-6848.	1.5	49

#	Article	IF	CITATIONS
73	A Mutation in the C-terminal Putative Zn2+ Finger Motif of UL52 Severely Affects the Biochemical Activities of the HSV-1 Helicase-Primase Subcomplex. Journal of Biological Chemistry, 1999, 274, 8068-8076.	1.6	38
74	Genetic Analysis of the UL15 Gene Locus for the Putative Terminase of Herpes Simplex Virus Type 1. Virology, 1998, 243, 32-44.	1.1	90
75	The Exonuclease Activity of HSV-1 UL12 Is Required forin VivoFunction. Virology, 1998, 244, 442-457.	1.1	59
76	Functional Conservations of the Alkaline Nuclease of Herpes Simplex Type 1 and Human Cytomegalovirus. Virology, 1998, 249, 460-470.	1.1	21
77	In Vitro Processing of Herpes Simplex Virus Type 1 DNA Replication Intermediates by the Viral Alkaline Nuclease, UL12. Journal of Virology, 1998, 72, 8772-8781.	1.5	52
78	ND10 Protein PML Is Recruited to Herpes Simplex Virus Type 1 Prereplicative Sites and Replication Compartments in the Presence of Viral DNA Polymerase. Journal of Virology, 1998, 72, 10100-10107.	1.5	97
79	The Herpes Simplex Virus Type 1 Cleavage/Packaging Protein, UL32, Is Involved in Efficient Localization of Capsids to Replication Compartments. Journal of Virology, 1998, 72, 2463-2473.	1.5	122
80	Herpes Simplex Virus Type 1 Cleavage and Packaging Proteins UL15 and UL28 Are Associated with B but Not C Capsids during Packaging. Journal of Virology, 1998, 72, 7428-7439.	1.5	88
81	Biochemical Analyses of Mutations in the HSV-1 Helicase-Primase That Alter ATP Hydrolysis, DNA Unwinding, and Coupling Between Hydrolysis and Unwinding. Journal of Biological Chemistry, 1997, 272, 4623-4630.	1.6	83
82	Replacement of Gly815 in Helicase Motif V Alters the Single-stranded DNA-dependent ATPase Activity of the Herpes Simplex Virus Type 1 Helicase-Primase. Journal of Biological Chemistry, 1996, 271, 13629-13635.	1.6	31
83	The Product of a 1.9-kb mRNA Which Overlaps the HSV-1 Alkaline Nuclease Gene (UL12) Cannot Relieve the Growth Defects of a Null Mutant. Virology, 1996, 215, 152-164.	1.1	53
84	The Herpes Simplex Virus Type 1 Transactivator ICP0 Mediates Aberrant Intracellular Localization of the Viral Helicase/Primase Complex Subunits. Virology, 1996, 220, 495-501.	1.1	14
85	Intracellular Localization of the Herpes Simplex Virus Type-1 Origin Binding Protein, UL9. Virology, 1996, 224, 380-389.	1.1	34
86	The Herpes Simplex Virus Type 1 UL6 Protein Is Essential for Cleavage and Packaging but Not for Genomic Inversion. Virology, 1996, 226, 403-407.	1.1	113
87	Herpes Simplex Virus 1 Alkaline Nuclease Is Required for Efficient Egress of Capsids from the Nucleus. Virology, 1993, 196, 146-162.	1.1	107
88	Genetic analysis of the herpes simplex virus type 1 UL9 gene: Isolation of a lacZ insertion mutant and expression in eukaryotic cells. Virology, 1992, 190, 702-715.	1.1	59
89	Herpes simplex virus type 1 mutants for the origin-binding protein induce DNA amplification in the absence of viral replication. Virology, 1990, 179, 478-481.	1.1	12
90	Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology, 1988, 166, 41-51.	1.1	253

#	Article	IF	CITATIONS
91	UL5, A protein required for HSV DNA synthesis: Genetic analysis, overexpression in Escherichia coli, and generation of polyclonal antibodies. Virology, 1988, 166, 366-378.	1.1	61
92	Genetic and phenotypic characterization of mutants in four essential genes that map to the left half of HSV-1 UL DNA. Virology, 1987, 161, 198-210.	1.1	102
93	Sequence and mapping analyses of the herpes simplex virus DNA polymerase gene predict a C-terminal substrate binding domain Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 7969-7973.	3.3	198
94	Genetic analysis of temperature-sensitive mutants of HSV-1: The combined use of complementation and physical mapping for cistron assignment. Virology, 1983, 130, 290-305.	1.1	130
95	Herpes Simplex Virus DNA Replication and Genome Maturation. , 0, , 189-213.		20
96	New Herpes Simplex Virus Replication Targets. , 0, , 347-361.		0