
Claude-Agnes Reynaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4559283/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human blood IgM "memory" B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood, 2004, 104, 3647-3654.	1.4	695
2	Multiple layers of B cell memory with different effector functions. Nature Immunology, 2009, 10, 1292-1299.	14.5	519
3	Visualizing antibody affinity maturation in germinal centers. Science, 2016, 351, 1048-1054.	12.6	366
4	Human Marginal Zone B Cells. Annual Review of Immunology, 2009, 27, 267-285.	21.8	349
5	Eukaryotic DNA Polymerases: Proposal for a Revised Nomenclature. Journal of Biological Chemistry, 2001, 276, 43487-43490.	3.4	307
6	Hypermutation generating the sheep immunoglobulin repertoire is an antigen-independent process. Cell, 1995, 80, 115-125.	28.9	300
7	Segmented Filamentous Bacterium Uses Secondary and Tertiary Lymphoid Tissues to Induce Gut IgA and Specific T Helper 17 Cell Responses. Immunity, 2014, 40, 608-620.	14.3	280
8	Somatic generation of diversity in a mammalian primary lymphoid organ: The sheep ileal Peyer's patches. Cell, 1991, 64, 995-1005.	28.9	267
9	Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell, 2021, 184, 1201-1213.e14.	28.9	260
10	Contribution of DNA polymerase η to immunoglobulin gene hypermutation in the mouse. Journal of Experimental Medicine, 2005, 201, 1191-1196.	8.5	190
11	Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature, 2002, 419, 944-947.	27.8	178
12	DNA polymerase \hat{I} is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse. Journal of Experimental Medicine, 2007, 204, 17-23.	8.5	169
13	AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nature Immunology, 2002, 3, 815-821.	14.5	168
14	Nonoverlapping Functions of DNA Polymerases Mu, Lambda, and Terminal Deoxynucleotidyltransferase during Immunoglobulin V(D)J Recombination In Vivo. Immunity, 2006, 25, 31-41.	14.3	163
15	B cell depletion in immune thrombocytopenia reveals splenic long-lived plasma cells. Journal of Clinical Investigation, 2013, 123, 432-442.	8.2	154
16	Two novel human and mouse DNA polymerases of the polX family. Nucleic Acids Research, 2000, 28, 3684-3693.	14.5	149
17	The human spleen is a major reservoir for long-lived vaccinia virus–specific memory B cells. Blood, 2008, 111, 4653-4659.	1.4	145
18	Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+IgD+CD27+ B cell repertoire in infants. Journal of Experimental Medicine, 2008, 205, 1331-1342.	8.5	143

CLAUDE-AGNES REYNAUD

#	Article	IF	CITATIONS
19	Mismatch Repair Deficiency Interferes with the Accumulation of Mutations in Chronically Stimulated B Cells and Not with the Hypermutation Process. Immunity, 1998, 9, 127-134.	14.3	138
20	Cutting Edge: DNA Polymerases μ and λ Are Dispensable for Ig Gene Hypermutation. Journal of Immunology, 2002, 168, 3702-3706.	0.8	134
21	Formation of the Chicken B-Cell Repertoire: Ontogenesis, Regulation of Ig Gene Rearrangement, and Diversification by Gene Conversion. Advances in Immunology, 1994, 57, 353-378.	2.2	133
22	Proteasomal degradation restricts the nuclear lifespan of AID. Journal of Experimental Medicine, 2008, 205, 1357-1368.	8.5	132
23	Clonal Evolution of Autoreactive Germinal Centers. Cell, 2017, 170, 913-926.e19.	28.9	118
24	Rearrangement/hypermutation/gene conversion: when, where and why?. Trends in Immunology, 1996, 17, 92-97.	7.5	117
25	DNA Polymerase η Is Involved in Hypermutation Occurring during Immunoglobulin Class Switch Recombination. Journal of Experimental Medicine, 2004, 199, 265-270.	8.5	117
26	Identification of a human splenic marginal zone B cell precursor with NOTCH2-dependent differentiation properties. Journal of Experimental Medicine, 2014, 211, 987-1000.	8.5	113
27	mRNA vaccination of naive and COVID-19-recovered individuals elicits potent memory B cells that recognize SARS-CoV-2 variants. Immunity, 2021, 54, 2893-2907.e5.	14.3	107
28	A Reassessment of IgM Memory Subsets in Humans. Journal of Immunology, 2015, 195, 3716-3724.	0.8	99
29	A human equivalent of mouse B-1 cells?. Journal of Experimental Medicine, 2011, 208, 2563-2564.	8.5	98
30	Role of DNA polymerases η, ι and ζ in UV resistance and UV-induced mutagenesis in a human cell line. DNA Repair, 2008, 7, 1551-1562.	2.8	93
31	IgM+IgD+CD27+ B cells are markedly reduced in IRAK-4–, MyD88-, and TIRAP- but not UNC-93B–deficient patients. Blood, 2012, 120, 4992-5001.	1.4	87
32	BAFF and CD4+ T cells are major survival factors for long-lived splenic plasma cells in a B-cell–depletion context. Blood, 2018, 131, 1545-1555.	1.4	72
33	What role for AID: mutator, or assembler of the immunoglobulin mutasome?. Nature Immunology, 2003, 4, 631-638.	14.5	70
34	IgM memory B cells: a mouse/human paradox. Cellular and Molecular Life Sciences, 2012, 69, 1625-1634.	5.4	67
35	Vaccination against encapsulated bacteria in humans: paradoxes. Trends in Immunology, 2005, 26, 85-89.	6.8	61
36	Long-Lived Plasma Cells in Autoimmunity: Lessons from B-Cell Depleting Therapy. Frontiers in Immunology, 2013, 4, 494.	4.8	60

#	Article	IF	CITATIONS
37	DNA polymerases in adaptive immunity. Nature Reviews Immunology, 2008, 8, 302-312.	22.7	59
38	Probing Immunoglobulin Gene Hypermutation with Microsatellites Suggests a Nonreplicative Short Patch DNA Synthesis Process. Immunity, 1998, 9, 257-265.	14.3	50
39	PCNA ubiquitination-independent activation of polymerase $\hat{\mathbf{I}}$ during somatic hypermutation and DNA damage tolerance. DNA Repair, 2011, 10, 1051-1059.	2.8	43
40	Analysis of mRNA vaccination-elicited RBD-specific memory B cells reveals strong but incomplete immune escape of the SARS-CoV-2 Omicron variant. Immunity, 2022, 55, 1096-1104.e4.	14.3	42
41	Emergence of long-lived autoreactive plasma cells in the spleen of primary warm auto-immune hemolytic anemia patients treated with rituximab. Journal of Autoimmunity, 2015, 62, 22-30.	6.5	40
42	Rituximab-resistant splenic memory B cells and newly engaged naive B cells fuel relapses in patients with immune thrombocytopenia. Science Translational Medicine, 2021, 13, .	12.4	40
43	A Backup Role of DNA Polymerase κ in Ig Gene Hypermutation Only Takes Place in the Complete Absence of DNA Polymerase η. Journal of Immunology, 2009, 182, 6353-6359.	0.8	37
44	Efficacy, safety and immunological profile of combining rituximab with belimumab for adults with persistent or chronic immune thrombocytopenia: results from a prospective phase 2b trial. Haematologica, 2021, 106, 2449-2457.	3.5	37
45	Gene profiling of CD11b+ and CD11bâ^' B1 cell subsets reveals potential cell sorting artifacts. Journal of Experimental Medicine, 2012, 209, 433-434.	8.5	36
46	Early B-cell development in chickens, sheep and rabbits. Current Opinion in Immunology, 1992, 4, 177-180.	5.5	33
47	Splenic marginal zone B cells in humans: Where do they mutate their Ig receptor?. European Journal of Immunology, 2005, 35, 2789-2792.	2.9	33
48	AID and partners: for better and (not) for worse. Current Opinion in Immunology, 2011, 23, 337-344.	5.5	33
49	Specific over-expression of deltex and a new Kelch-like protein in human germinal center B cells. Molecular Immunology, 2003, 39, 791-799.	2.2	32
50	Anti-CD20–mediated B-cell depletion in autoimmune diseases: successes, failures and future perspectives. Kidney International, 2020, 97, 885-893.	5.2	32
51	Mismatch repair and immunoglobulin gene hypermutation: did we learn something?. Trends in Immunology, 1999, 20, 522-527.	7.5	30
52	Redundancy of mammalian Y family DNA polymerases in cellular responses to genomic DNA lesions induced by ultraviolet light. Nucleic Acids Research, 2014, 42, 11071-11082.	14.5	30
53	A splenic IgM memory subset with antibacterial specificities is sustained from persistent mucosal responses. Journal of Experimental Medicine, 2018, 215, 2035-2053.	8.5	30
54	A Targeted Deletion of a Region Upstream from the Jκ Cluster Impairs κ Chain Rearrangement In Cis in Mice and in the 103/bcl2 Cell Line. Journal of Experimental Medicine, 1999, 189, 1443-1450.	8.5	28

#	Article	IF	CITATIONS
55	A bird's eye view on human B cells. Seminars in Immunology, 2004, 16, 277-281.	5.6	28
56	Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs. Journal of Experimental Medicine, 2017, 214, 1169-1180.	8.5	27
57	IgM memory B cells: specific effectors of innate-like and adaptive responses. Current Opinion in Immunology, 2020, 63, 1-6.	5.5	27
58	Chronic Viral Infection Promotes Efficient Germinal Center B Cell Responses. Cell Reports, 2020, 30, 1013-1026.e7.	6.4	27
59	Competitive repair pathways in immunoglobulin gene hypermutation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 613-619.	4.0	26
60	Hypermutation in Human B Cells <i>in Vivo</i> and <i>in Vitro</i> . Annals of the New York Academy of Sciences, 2003, 987, 158-165.	3.8	24
61	Somatic Hypermutation at A/T-Rich Oligonucleotide Substrates Shows Different Strand Polarities in Ung-Deficient or -Proficient Backgrounds. Molecular and Cellular Biology, 2014, 34, 2176-2187.	2.3	22
62	Normal Immune System Development in Mice Lacking the Deltex-1 RING Finger Domain. Molecular and Cellular Biology, 2005, 25, 1437-1445.	2.3	21
63	Introduction: What mechanism(s) drive hypermutation?. Seminars in Immunology, 1996, 8, 125-129.	5.6	20
64	Multiple players in mouse B cell memory. Current Opinion in Immunology, 2013, 25, 334-338.	5.5	19
65	Galt versus bone marrow models of B cell ontogeny. Developmental and Comparative Immunology, 1998, 22, 379-385.	2.3	18
66	lg gene hypermutation: A mechanism is due. Advances in Immunology, 2002, 80, 183-202.	2.2	18
67	Do developing B cells need antigen?. Journal of Experimental Medicine, 2005, 201, 7-9.	8.5	16
68	Klhl6 Deficiency Impairs Transitional B Cell Survival and Differentiation. Journal of Immunology, 2017, 199, 2408-2420.	0.8	16
69	Rearrangement of the chicken lambda light chain locus: a silencer/antisilencer regulation. Seminars in Immunology, 1994, 6, 165-173.	5.6	14
70	Molecular Signatures of Kidney Antibody–Secreting Cells in Lupus Patients With Active Nephritis Upon Immunosuppressive Therapy. Arthritis and Rheumatology, 2021, 73, 1461-1466.	5.6	10
71	The AID-Cre-ERT2 Model: A Tool for Monitoring B Cell Immune Responses and Generating Selective Hybridomas. Methods in Molecular Biology, 2017, 1623, 243-251.	0.9	10
72	129-Derived Mouse Strains Express an Unstable but Catalytically Active DNA Polymerase Iota Variant. Molecular and Cellular Biology, 2015, 35, 3059-3070.	2.3	8

CLAUDE-AGNES REYNAUD

#	Article	IF	CITATIONS
73	A single aspartate mutation in the conserved catalytic site of Rev3L generates a hypomorphic phenotype in vivo and in vitro. DNA Repair, 2016, 46, 37-46.	2.8	7
74	Negative regulation of Ig gene rearrangement by a 150-bp transcriptional silencer. European Journal of Immunology, 1998, 28, 2809-2816.	2.9	6
75	Allelic exclusion: lesson from GALT species. Seminars in Immunology, 2002, 14, 213-215.	5.6	6
76	The ups and downs of negative (and positive) selection of B cells. Journal of Clinical Investigation, 2015, 125, 3748-3750.	8.2	3
77	RPA tightens AID to DNAediting. Nature Immunology, 2004, 5, 876-878.	14.5	2
78	Predicting AID off-targets: A step forward. Journal of Experimental Medicine, 2018, 215, 721-722.	8.5	2
79	Emergence of Long-Lived Autoreactive Plasma Cells in the Spleen of Primary Warm Auto-Immune Hemolytic Anemia Patients Treated with Rituximab. Blood, 2014, 124, 569-569.	1.4	1
80	Memory B Cells. , 2016, , 195-199.		1
81	Editorial overview: Lymphocyte activation and effector functions. Current Opinion in Immunology, 2014, 28, v-vii.	5.5	0
82	Human B Cell Subsets. , 2016, , 122-124.		0
83	Immunoglobulin Diversification by Gene Conversion. , 2016, , 144-147.		0
84	THU0211â€EVOLUTION OF KIDNEY ANTIBODY SECRETING CELLS MOLECULAR SIGNATURE IN LUPUS PATIENTS WITH ACTIVE NEPHRITIS UPON IMMUNOSUPPRESSIVE THERAPY. , 2019, , .	5	0
85	O19â€Evolution of kidney antibody secreting cells molecular signature in lupus patients with active nephritis upon immunosuppressive therapy. , 2020, , .		0
86	Editorial overview: Lymphocyte effector subsets: blurring the frontiers. Current Opinion in Immunology, 2020, 63, iii-v.	5.5	0
87	High-Throughput Ig Sequencing of Paired Blood and Spleen Samples Allows a Redefinition of Memory IgM Subsets in Humans. Blood, 2014, 124, 565-565.	1.4	0
88	BAFF and CD4 T-Cells Are Major Survival Factors for Splenic Plasma Cells in B Cell Depletion Context: Implications for Autoimmune Diseases. Blood, 2016, 128, 129-129.	1.4	0