Stephen J Duffy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4558877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sex disparity in secondary prevention pharmacotherapy and clinical outcomes following acute coronary syndrome. European Heart Journal Quality of Care & Clinical Outcomes, 2022, 8, 420-428.	4.0	4
2	Periprocedural Myocardial Injury and Coronary Artery Disease in Patients Undergoing Transcatheter Aortic Valve Replacement. Cardiovascular Revascularization Medicine, 2022, 35, 8-15.	0.8	9
3	Long-term mortality in asymptomatic patients with stable ischemic heart disease undergoing percutaneous coronary intervention. American Heart Journal, 2022, 244, 77-85.	2.7	2
4	Relation of Preprocedure Platelet-to-Lymphocyte Ratio and Major Adverse Cardiovascular Events Following Transcatheter Aortic Valve Implantation for Aortic Stenosis. American Journal of Cardiology, 2022, 163, 65-70.	1.6	5
5	Role of renin–angiotensin system antagonists on long-term mortality post-percutaneous coronary intervention in reduced and preserved ejection fraction. Clinical Research in Cardiology, 2022, , 1.	3.3	2
6	Health-related quality of life following percutaneous coronary intervention during the COVID-19 pandemic. Quality of Life Research, 2022, , 1.	3.1	0
7	Sex differences in prehospital analgesia in patients presenting with acute coronary syndromes and their association with clinical outcomes. Catheterization and Cardiovascular Interventions, 2022, , .	1.7	0
8	Sex-Specific Outcomes Following Percutaneous Coronary Intervention Versus Coronary Artery Bypass Grafting for Left Main Disease: A Systematic Review and Meta-Analysis. Heart Lung and Circulation, 2022, , .	0.4	0
9	Reperfusion Times and Outcomes in Patients With ST-Elevation Myocardial Infarction Presenting Without Pre-Hospital Notification. Cardiovascular Revascularization Medicine, 2022, 41, 136-141.	0.8	3
10	Adverse 30-Day Clinical Outcomes and Long-Term Mortality Among Patients With Preprocedural Atrial Fibrillation Undergoing Percutaneous Coronary Intervention. Heart Lung and Circulation, 2022, , .	0.4	2
11	Differences in outcomes of patients with in-hospital versus out-of-hospital ST-elevation myocardial infarction: a registry analysis. BMJ Open, 2022, 12, e052000.	1.9	2
12	Sex differences in treatment and outcomes of patients with inâ€hospital STâ€elevation myocardial infarction. Clinical Cardiology, 2022, 45, 427-434.	1.8	3
13	Determinants of Undertaking Coronary Angiography and Adverse Prognostic Predictors Among Patients Presenting With Out-of-Hospital Cardiac Arrest and a Shockable Rhythm. American Journal of Cardiology, 2022, 171, 75-83.	1.6	5
14	Percutaneous Coronary Intervention Volume and Cardiac Surgery Availability Effect on AcuteÂCoronary Syndrome-Related Cardiogenic Shock. JACC: Cardiovascular Interventions, 2022, 15, 876-886.	2.9	13
15	Prognostic significance of suboptimal secondary prevention pharmacotherapy after acute coronary syndromes. Internal Medicine Journal, 2021, 51, 366-374.	0.8	9
16	Outcomes of Percutaneous Coronary Intervention in Patients With Rheumatoid Arthritis. American Journal of Cardiology, 2021, 140, 39-46.	1.6	4
17	Transcatheter Versus Surgical Aortic Valve Replacement: An Updated Systematic Review and Meta-Analysis With a Focus on Outcomes by Sex. Heart Lung and Circulation, 2021, 30, 86-99.	0.4	9
18	Sex Differences in Radial Access for Percutaneous Coronary Intervention in Acute Coronary Syndrome Are Independent of Body Size. Heart Lung and Circulation, 2021, 30, 108-114.	0.4	8

#	Article	IF	CITATIONS
19	Sex Disparities in Myocardial Infarction: Biology or Bias?. Heart Lung and Circulation, 2021, 30, 18-26.	0.4	46
20	Comparison of Long-Term Mortality in Patients With Single Coronary Narrowing and Diabetes Mellitus to That of Patients With Multivessel Coronary Narrowing Without Diabetes Mellitus. American Journal of Cardiology, 2021, 142, 1-4.	1.6	2
21	Cost-Effectiveness of Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients With Severe Aortic Stenosis. Heart Lung and Circulation, 2021, 30, 547-554.	0.4	17
22	Adverse impact of chronic kidney disease on clinical outcomes following percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 2021, 97, E801-E809.	1.7	14
23	Clinical Outcomes in Older Patients Undergoing Percutaneous Coronary Intervention for Non-ST-Elevation Acute Coronary Syndromes. Heart Lung and Circulation, 2021, 30, 275-281.	0.4	0
24	Role of beta blockers following percutaneous coronary intervention for acute coronary syndrome. Heart, 2021, 107, 728-733.	2.9	11
25	Difference in a decade: percutaneous coronary interventions in Australia. Internal Medicine Journal, 2021, 51, 138-139.	0.8	0
26	Rescue PCI in the management of STEMI: Contemporary results from the Melbourne Interventional Group registry. IJC Heart and Vasculature, 2021, 33, 100745.	1.1	2
27	Intravascular Ultrasound Versus Angiography-Guided Drug-Eluting Stent Implantation: A Health Economic Analysis. Circulation: Cardiovascular Quality and Outcomes, 2021, 14, e006789.	2.2	34
28	Comparison of Long-Term Outcomes After Percutaneous Coronary Intervention in Patients With Insulin-Treated Versus Non-Insulin Treated Diabetes Mellitus. American Journal of Cardiology, 2021, 148, 36-43.	1.6	4
29	Characteristics and outcomes of unsuccessful percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 2021, , .	1.7	2
30	Short- and Long-Term Outcomes After Transcatheter Aortic Valve Implantation in Public and Private Hospital Settings: A Propensity-Matched Analysis. Heart Lung and Circulation, 2021, 30, 1910-1917.	0.4	3
31	Sex Differences in Prehospital Delays in Patients With STâ€Segment–Elevation Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Journal of the American Heart Association, 2021, 10, e019938.	3.7	21
32	Effects of lignocaine vs. opioids on antiplatelet activity of ticagrelor: the LOCAL trial. European Heart Journal, 2021, 42, 4025-4036.	2.2	12
33	Comparison of Outcomes of Coronary Artery Disease Treated by Percutaneous Coronary Intervention in 3 Different Age Groups (<45, 46-65, and >65 Years). American Journal of Cardiology, 2021, 152, 19-26.	1.6	9
34	Comparison of Long-Term Outcomes in Men versus Women Undergoing Percutaneous Coronary Intervention. American Journal of Cardiology, 2021, 153, 1-8.	1.6	11
35	Differences in outcome of percutaneous coronary intervention between Indigenous and non-Indigenous people in Victoria, Australia: a multicentre, prospective, observational, cohort study. The Lancet Global Health, 2021, 9, e1296-e1304.	6.3	7
36	Temporal Trends in Patient Risk Profile and Clinical Outcomes Following Percutaneous Coronary Intervention. Cardiovascular Revascularization Medicine, 2021, 31, 10-16.	0.8	9

#	Article	IF	CITATIONS
37	Totally Occluded Culprit Coronary Artery in Patients with Non-ST-Elevation Myocardial Infarction Undergoing Percutaneous Coronary Intervention. American Journal of Cardiology, 2021, 156, 52-57.	1.6	3
38	The role of CHA2DS2-VASc score in evaluating patients with atrial fibrillation undergoing percutaneous coronary intervention. Coronary Artery Disease, 2021, 32, 288-294.	0.7	3
39	Impact of Age and Sex on Treatment and Outcomes Following Myocardial Infarction. Journal of the American College of Cardiology, 2021, 78, 1934-1936.	2.8	1
40	Assessment of Pretreatment With Oral P2Y12 Inhibitors and Cardiovascular and Bleeding Outcomes in Patients With Non-ST Elevation Acute Coronary Syndromes. JAMA Network Open, 2021, 4, e2134322.	5.9	12
41	The Impact of Out-of-Hours Presentation on Clinical Outcomes in ST-Elevation Myocardial Infarction. Heart Lung and Circulation, 2020, 29, 814-823.	0.4	3
42	Impact of lunar phase on outcomes following STâ€elevation myocardial infarction. Internal Medicine Journal, 2020, 50, 322-329.	0.8	3
43	Incidence, Predictors and Clinical Outcomes of Stent Thrombosis Following Percutaneous Coronary Intervention in Contemporary Practice. Heart Lung and Circulation, 2020, 29, 1433-1439.	0.4	10
44	The cost-effectiveness of guideline-driven use of drug-eluting stents: propensity-score matched analysis of a seven-year multicentre experience. Current Medical Research and Opinion, 2020, 36, 419-426.	1.9	3
45	Impact of limited English proficiency on presentation and clinical outcomes of patients undergoing primary percutaneous coronary intervention. European Heart Journal Quality of Care & Clinical Outcomes, 2020, 6, 254-262.	4.0	12
46	Prevalence, Outcomes and Cost Implications of Patients Undergoing Same Day Discharge After Elective Percutaneous Coronary Intervention in Australia. Heart Lung and Circulation, 2020, 29, e185-e193.	0.4	9
47	Medium-Term Bioresorbable Scaffold Outcomes Utilising Data From an Australian Clinical Quality Registry. Heart Lung and Circulation, 2020, 29, 1440-1448.	0.4	0
48	Trends of Use and Outcomes Associated With Glycoprotein-IIb/IIIa Inhibitors in Patients With Acute Coronary Syndromes Undergoing Percutaneous Coronary Intervention. Annals of Pharmacotherapy, 2020, 54, 414-422.	1.9	6
49	Long-Term Outcomes Stratified by Body Mass Index in Patients Undergoing Transcatheter Aortic Valve Implantation. American Journal of Cardiology, 2020, 137, 77-82.	1.6	11
50	Cardiovascular disease and <scp>COVID</scp> â€19: Australian and New Zealand consensus statement. Medical Journal of Australia, 2020, 213, 182-187.	1.7	54
51	Impact of Gender on Transcatheter Aortic Valve Implantation Outcomes. American Journal of Cardiology, 2020, 133, 98-104.	1.6	11
52	Utility of balloon aortic valvuloplasty in the transcatheter aortic valve implantation era. Open Heart, 2020, 7, e001208.	2.3	7
53	Incidence and Predictors of Unplanned Hospital Readmission after Percutaneous Coronary Intervention. Journal of Clinical Medicine, 2020, 9, 3242.	2.4	10
54	Long-term outcomes following percutaneous coronary intervention to an unprotected left main coronary artery in cardiogenic shock. International Journal of Cardiology, 2020, 308, 20-25.	1.7	3

#	Article	IF	CITATIONS
55	Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress–Induced, Piezo-1–Mediated Monocyte Activation. Circulation, 2020, 142, 1092-1105.	1.6	70
56	Clinical outcomes following STâ€elevation myocardial infarction secondary to stent thrombosis treated by percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 2020, 96, E406-E415.	1.7	2
57	Outcomes of cardiogenic shock complicating acute coronary syndromes. Catheterization and Cardiovascular Interventions, 2020, 96, E257-E267.	1.7	10
58	Short- and long-term outcomes of out-of-hospital cardiac arrest following ST-elevation myocardial infarction managed with percutaneous coronary intervention. Resuscitation, 2020, 150, 121-129.	3.0	6
59	Incidence and risk factors for stroke following percutaneous coronary intervention. International Journal of Stroke, 2020, 15, 909-922.	5.9	6
60	Relation of Timing of Percutaneous Coronary Intervention on Outcomes in Patients With Non-ST Segment Elevation Myocardial Infarction. American Journal of Cardiology, 2020, 136, 15-23.	1.6	2
61	Temporal Changes in Characteristics, Treatment and Outcomes of Heart Failure Patients Undergoing Percutaneous Coronary Intervention Findings From Melbourne Interventional Group Registry. Heart Lung and Circulation, 2019, 28, 1018-1026.	0.4	0
62	Factors That Prevent Progression to Transcatheter Aortic Valve Implantation (TAVI). Heart Lung and Circulation, 2019, 28, 1225-1234.	0.4	3
63	Impact of Gender and Door-to-Balloon Times on Long-Term Mortality in Patients Presenting With ST-Elevation Myocardial Infarction. American Journal of Cardiology, 2019, 124, 833-841.	1.6	17
64	Comparison of Outcomes of Transcatheter Aortic Valve Implantation in Patients Aged >90 Years Versus <90 Years. American Journal of Cardiology, 2019, 124, 1085-1090.	1.6	12
65	Cost-effectiveness of transcatheter aortic valve implantation compared to surgical aortic valve replacement in the intermediate surgical risk population. International Journal of Cardiology, 2019, 294, 17-22.	1.7	17
66	Reply. Journal of the American College of Cardiology, 2019, 74, 2012-2013.	2.8	0
67	Risk-Adjusting Key Outcome Measures in a Clinical Quality PCI Registry. JACC: Cardiovascular Interventions, 2019, 12, 1966-1975.	2.9	6
68	Preoperative biomarker evaluation for the prediction of cardiovascular events after major vascular surgery. Journal of Vascular Surgery, 2019, 70, 1564-1575.	1.1	5
69	Transcatheter Mitral Valve Implantation with the Medtronic Intrepidâ,,¢ Transcatheter Mitral Valve Replacement System. Future Cardiology, 2019, 15, 281-293.	1.2	1
70	Impact of Pre-Procedural Blood Pressure on Long-Term Outcomes Following Percutaneous Coronary Intervention. Journal of the American College of Cardiology, 2019, 73, 2846-2855.	2.8	27
71	Trends and predictors of recurrent acute coronary syndrome hospitalizations and unplanned revascularization after index acute myocardial infarction treated with percutaneous coronary intervention. American Heart Journal, 2019, 212, 134-143.	2.7	21
72	Outcomes in patients with peripheral vascular disease following percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 2019, 94, 588-597.	1.7	16

#	Article	IF	CITATIONS
73	One-Year Outcomes of Patients With Established Coronary Artery Disease Presenting With Acute Coronary Syndromes. American Journal of Cardiology, 2019, 123, 1387-1392.	1.6	8
74	Re-examining the effect of door-to-balloon delay on STEMI outcomes in the context of unmeasured confounders: a retrospective cohort study. Scientific Reports, 2019, 9, 19978.	3.3	8
75	Impact of Socioeconomic Status on Clinical Outcomes in Patients With ST-Segment–Elevation Myocardial Infarction. Circulation: Cardiovascular Quality and Outcomes, 2019, 12, e004979.	2.2	38
76	Thirtyâ€day outcomes in Indigenous Australians following coronary artery bypass grafting. Internal Medicine Journal, 2018, 48, 780-785.	0.8	8
77	Does Statin Benefits Patients with Heart Failure Undergoing Percutaneous Coronary Intervention? Findings from the Melbourne Interventional Group Registry. Cardiovascular Drugs and Therapy, 2018, 32, 57-64.	2.6	4
78	Early Experience With New TranscatheterÂMitral Valve Replacement. Journal of the American College of Cardiology, 2018, 71, 12-21.	2.8	229
79	Does the subtype of acute coronary syndrome treated by percutaneous coronary intervention predict long-term clinical outcomes?. European Heart Journal Quality of Care & Clinical Outcomes, 2018, 4, 318-327.	4.0	9
80	Trends and Clinical Outcomes in Patients Undergoing Primary Percutaneous Revascularisation for ST-Elevation Myocardial Infarction: A Single Centre Experience. Heart Lung and Circulation, 2018, 27, 683-692.	0.4	1
81	Pioglitazone reduces cold-induced brown fat glucose uptake despite induction of browning in cultured human adipocytes: a randomised, controlled trial in humans. Diabetologia, 2018, 61, 220-230.	6.3	28
82	The Establishment of the Victorian Cardiac Outcomes Registry (VCOR): Monitoring and Optimising Outcomes for Cardiac Patients in Victoria. Heart Lung and Circulation, 2018, 27, 451-463.	0.4	53
83	Australian Trends in Procedural Characteristics and Outcomes in Patients Undergoing Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction. American Journal of Cardiology, 2018, 121, 279-288.	1.6	22
84	Utility of the <scp>ACC</scp> / <scp>AHA</scp> lesion classification as a predictor of procedural, 30â€day and 12â€month outcomes in the contemporary percutaneous coronary intervention era. Catheterization and Cardiovascular Interventions, 2018, 92, E227-E234.	1.7	23
85	Delays in primary percutaneous coronary treatment for patients with STâ€elevation myocardial infarction. Medical Journal of Australia, 2018, 209, 130-131.	1.7	3
86	The Real-World Cost-Effectiveness of Coronary Artery Bypass Surgery Versus Stenting in High-Risk Patients: Propensity Score-Matched Analysis of a Single-Centre Experience. Applied Health Economics and Health Policy, 2018, 16, 661-674.	2.1	8
87	Heart Rate as a Predictor of Outcome Following Percutaneous Coronary Intervention. American Journal of Cardiology, 2018, 122, 1113-1120.	1.6	6
88	Myopericarditis with preserved left ventricular function secondary to Neisseria meningitidis. Diagnostic Microbiology and Infectious Disease, 2018, 92, 241-244.	1.8	2
89	Mortality prediction after transcatheter treatment of failed bioprosthetic aortic valves utilizing various international scoring systems: Insights from the Valveâ€inâ€Valve International Data (VIVID). Catheterization and Cardiovascular Interventions, 2018, 92, 1163-1170.	1.7	8

 $_{90}$ Evolution of Australian Percutaneous Coronary Intervention (from the Melbourne Interventional) Tj ETQq0 0 0 rgBT_{1.0} Verlock 10 Tf 50 6

#	Article	IF	CITATIONS
91	The prognostic significance of smoking cessation after acute coronary syndromes: an observational, multicentre study from the Melbourne interventional group registry. BMJ Open, 2017, 7, e016874.	1.9	18
92	Trends and Impact of Door-to-Balloon Time on Clinical Outcomes in Patients Aged <75, 75 to 84, and ≥85 Years With ST-Elevation Myocardial Infarction. American Journal of Cardiology, 2017, 120, 1245-1253.	1.6	13
93	Effects of the BET-inhibitor, RVX-208 on the HDL lipidome and glucose metabolism in individuals with prediabetes: A randomized controlled trial. Metabolism: Clinical and Experimental, 2016, 65, 904-914.	3.4	37
94	Prevalence and outcomes of trans-radial access for percutaneous coronary intervention in contemporary practise. International Journal of Cardiology, 2016, 221, 264-268.	1.7	21
95	Impact of door-to-balloon time on long-term mortality in high- and low-risk patients with ST-elevation myocardial infarction. International Journal of Cardiology, 2016, 224, 72-78.	1.7	27
96	A systematic review of cost-effectiveness of percutaneous coronary intervention vs. surgery for the treatment of multivessel coronary artery disease in the drug-eluting stent era. European Heart Journal Quality of Care & Clinical Outcomes, 2016, 2, 261-270.	4.0	13
97	Incidence, Predictors and Outcomes of Major Bleeding in Patients Following Percutaneous Coronary Interventions in Australia. Heart Lung and Circulation, 2016, 25, 107-117.	0.4	9
98	Utility of rotational atherectomy and outcomes over an eightâ€year period. Catheterization and Cardiovascular Interventions, 2015, 86, 626-631.	1.7	16
99	Long-term survival of elderly patients undergoing percutaneous coronary intervention for myocardial infarction complicated by cardiogenic shock. International Journal of Cardiology, 2015, 195, 259-264.	1.7	17
100	Mid-term Outcomes in Patients Following Transcatheter Aortic Valve Implantation in the CoreValve Australia and New Zealand Study. Heart Lung and Circulation, 2015, 24, 281-290.	0.4	18
101	Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the) Tj ETQq1 I	l 0.78431	4 rgBT /Over
102	Cardiovascular Medication Use Following Percutaneous Coronary Intervention: The Australian Experience. Cardiovascular Therapeutics, 2014, 32, 47-51.	2.5	7
103	Reducing iodinated contrast volume by manipulating injection pressure during coronary angiography. Catheterization and Cardiovascular Interventions, 2014, 83, 741-745.	1.7	12
104	Impact of renal function in patients with multi-vessel coronary disease on long-term mortality following coronary artery bypass grafting compared with percutaneous coronary intervention. International Journal of Cardiology, 2014, 172, 442-449.	1.7	7
105	Device-Based Therapy in the Prevention of Contrast-Induced Nephropathy. Interventional Cardiology Clinics, 2014, 3, 421-428.	0.4	2
106	Reduced UCP-1 Content in In Vitro Differentiated Beige/Brite Adipocytes Derived from Preadipocytes of Human Subcutaneous White Adipose Tissues in Obesity. PLoS ONE, 2014, 9, e91997.	2.5	67
107	Usefulness of Transient and Persistent No Reflow to Predict Adverse Clinical Outcomes Following Percutaneous Coronary Intervention. American Journal of Cardiology, 2012, 109, 478-485.	1.6	57
108	Impact of Periprocedural Atrial Fibrillation on Short-Term Clinical Outcomes Following Percutaneous Coronary Intervention. American Journal of Cardiology, 2012, 109, 471-477.	1.6	38

#	Article	IF	CITATIONS
109	Progress Towards a National Cardiac Procedure Database—Development of the Australasian Society of Cardiac and Thoracic Surgeons (ASCTS) and Melbourne Interventional Group (MIG) Registries. Heart Lung and Circulation, 2011, 20, 10-18.	0.4	78
110	Quality Control Activities Associated with Registries in Interventional Cardiology and Surgery. Heart Lung and Circulation, 2011, 20, 180-186.	0.4	64
111	Recent trends in Australian percutaneous coronary intervention practice: insights from the Melbourne Interventional Group registry. Medical Journal of Australia, 2011, 195, 122-127.	1.7	18
112	Management of the no-reflow phenomenon. , 2011, 132, 72-85.		27
113	Impact of concomitant heart failure on outcomes in patients undergoing percutaneous coronary interventions: analysis of the Melbourne Interventional Group registry. European Journal of Heart Failure, 2011, 13, 416-422.	7.1	9
114	Is There an Obesity Paradox After Percutaneous Coronary Intervention in the Contemporary Era?. JACC: Cardiovascular Interventions, 2010, 3, 660-668.	2.9	111
115	The effect of intended duration of clopidogrel use on early and late mortality and major adverse cardiac events in patients with drug-eluting stents. American Heart Journal, 2009, 157, 899-907.	2.7	35
116	Compliance mismatch between stenotic and distal reference segment is associated with coronary artery disease instability. Atherosclerosis, 2009, 206, 179-185.	0.8	9
117	Predictors and Outcomes of the No-Reflow Phenomenon. Heart Lung and Circulation, 2008, 17, S176.	0.4	2
118	Novel cardiac therapies and innocent bystanders. Lancet, The, 2008, 371, 1726-1728.	13.7	3
119	Matrix metalloproteinase-3 and coronary remodelling: Implications for unstable coronary disease. Cardiovascular Research, 2007, 75, 813-820.	3.8	36
120	An evaluation of octogenarians undergoing percutaneous coronary intervention from the Melbourne Interventional Group registry. Catheterization and Cardiovascular Interventions, 2007, 70, 928-936.	1.7	38
121	Use of drugâ€eluting stents in Victorian public hospitals. Medical Journal of Australia, 2006, 185, 363-367.	1.7	28
122	Feasibility and short-term efficacy of percutaneous mitral annular reduction for the therapy of functional mitral regurgitation in patients with heart failure. Catheterization and Cardiovascular Interventions, 2006, 68, 205-210.	1.7	46
123	Low-Renin Hypertension With Relative Aldosterone Excess Is Associated With Impaired NO-Mediated Vasodilation. Hypertension, 2005, 46, 707-713.	2.7	53
124	Effects of phenolics on vascular endothelial function. Current Opinion in Lipidology, 2003, 14, 21-27.	2.7	46
125	Reply to the letter. Catheterization and Cardiovascular Interventions, 2002, 55, 272-273.	1.7	0
126	Effect of ascorbic acid treatment on conduit vessel endothelial dysfunction in patients with hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H528-H534.	3.2	104

#	Article	IF	CITATIONS
127	Effect Of Anti-Oxidant Treatment And Cholesterol Lowering On Resting Arterial Tone, Metabolic Vasodilation And Endothelial Function In The Human Forearm: A Randomized, Placebo-Controlled Study. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 409-418.	1.9	17
128	Agreement between coronary flow velocity reserve and stress echocardiography in intermediate-severity coronary stenoses. Catheterization and Cardiovascular Interventions, 2001, 53, 29-38.	1.7	14
129	Effects of Race and Hypertension on Flow-Mediated and Nitroglycerin-Mediated Dilation of the Brachial Artery. Hypertension, 2001, 38, 1349-1354.	2.7	105
130	Iron Chelation Improves Endothelial Function in Patients With Coronary Artery Disease. Circulation, 2001, 103, 2799-2804.	1.6	235
131	Short- and Long-Term Black Tea Consumption Reverses Endothelial Dysfunction in Patients With Coronary Artery Disease. Circulation, 2001, 104, 151-156.	1.6	506
132	Pharmacological Concentrations of Ascorbic Acid Are Required for the Beneficial Effect on Endothelial Vasomotor Function in Hypertension. Hypertension, 2000, 35, 936-941.	2.7	144
133	Outcomes of Thrombus Aspiration During Primary Percutaneous Coronary Intervention for <scp>STâ€Elevation</scp> Myocardial Infarction, Internal Medicine Journal, 0,	0.8	1