
Frank M Schurr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4558643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 2007, 30, 609-628.	4.5	2,522
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
3	Predicting global change impacts on plant species' distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 9, 137-152.	2.7	966
4	Mechanisms of long-distance seed dispersal. Trends in Ecology and Evolution, 2008, 23, 638-647.	8.7	705
5	When and how should intraspecific variability be considered in trait-based plant ecology?. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 217-225.	2.7	454
6	Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 2012, 39, 2163-2178.	3.0	340
7	How to understand species' niches and range dynamics: a demographic research agenda for biogeography. Journal of Biogeography, 2012, 39, 2146-2162.	3.0	249
8	REVIEW: Predictive ecology in a changing world. Journal of Applied Ecology, 2015, 52, 1293-1310.	4.0	237
9	Forecasting plant migration rates: managing uncertainty for risk assessment. Journal of Ecology, 2003, 91, 341-347.	4.0	204
10	The influence of interspecific interactions on species range expansion rates. Ecography, 2014, 37, 1198-1209.	4.5	196
11	Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Global Ecology and Biogeography, 2012, 21, 293-304.	5.8	188
12	Spread of North American wind-dispersed trees in future environments. Ecology Letters, 2011, 14, 211-219.	6.4	160
13	Increased mortality can promote evolutionary adaptation of forest trees to climate change. Forest Ecology and Management, 2010, 259, 1003-1008.	3.2	129
14	Does probability of occurrence relate to population dynamics?. Ecography, 2014, 37, 1155-1166.	4.5	127
15	A mechanistic model for secondary seed dispersal by wind and its experimental validation. Journal of Ecology, 2005, 93, 1017-1028.	4.0	122
16	Plant fecundity and seed dispersal in spatially heterogeneous environments: models, mechanisms and estimation. Journal of Ecology, 2008, 96, 628-641.	4.0	114
17	The state of plant population modelling in light of environmental change. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 9, 171-189.	2.7	107
18	The making of a rapid plant invader: genetic diversity and differentiation in the native and invaded range of <i>Senecio inaequidens</i> . Molecular Ecology, 2010, 19, 3952-3967.	3.9	100

#	Article	IF	CITATIONS
19	Colonization and persistence ability explain the extent to which plant species fill their potential range. Global Ecology and Biogeography, 2007, 16, 449-459.	5.8	92
20	Spatial pattern formation in semi-arid shrubland: a priori predicted versus observed pattern characteristics. Plant Ecology, 2004, 173, 271-282.	1.6	87
21	Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: Opportunities and challenges. Austral Ecology, 2010, 35, 374-391.	1.5	86
22	Rethinking the common garden in invasion research. Perspectives in Plant Ecology, Evolution and Systematics, 2009, 11, 311-320.	2.7	73
23	Estimating demographic models for the range dynamics of plant species. Global Ecology and Biogeography, 2010, 19, 85-97.	5.8	73
24	Increases in air temperature can promote wind-driven dispersal and spread of plants. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3081-3087.	2.6	72
25	The dimensionality of stability depends on disturbance type. Ecology Letters, 2019, 22, 674-684.	6.4	65
26	Habitat loss and fragmentation affecting mammal and bird communities—The role of interspecific competition and individual space use. Ecological Informatics, 2013, 14, 90-98.	5.2	60
27	Quantifying rangeâ€wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records. Methods in Ecology and Evolution, 2014, 5, 751-760.	5.2	56
28	Differentiation of reproductive and competitive ability in the invaded range of Senecio inaequidens: the role of genetic Allee effects, adaptive and nonadaptive evolution. New Phytologist, 2011, 192, 529-541.	7.3	50
29	Demography as the basis for understanding and predicting range dynamics. Ecography, 2014, 37, 1149-1154.	4.5	49
30	PATERNAL GENETIC EFFECTS ON OFFSPRING FITNESS ARE CONTEXT DEPENDENT: WITHIN THE EXTRAPAIR MATING SYSTEM OF A SOCIALLY: MONOGAMOUS PASSERINE. Evolution; International Journal of Organic Evolution, 2005, 59, 645-657.	2.3	47
31	Costs of persistence and the spread of competing seeders and sprouters. Journal of Ecology, 2008, 96, 679-686.	4.0	46
32	An allometric model of home range formation explains the structuring of animal communities exploiting heterogeneous resources. Oikos, 2011, 120, 106-118.	2.7	45
33	Paternal genetic effects on offspring fitness are context dependent within the extrapair mating system of a socially monogamous passerine. Evolution; International Journal of Organic Evolution, 2005, 59, 645-57.	2.3	45
34	Mismatches between demographic niches and geographic distributions are strongest in poorly dispersed and highly persistent plant species. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3663-3669.	7.1	42
35	Lifespan, lifetime reproductive performance and paternity loss of within-pair and extra-pair offspring in the coal tit <i>Periparus ater</i> . Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 337-345.	2.6	41
36	Sugar landscapes and pollinatorâ€mediated interactions in plant communities. Ecography, 2017, 40, 1129-1138.	4.5	41

#	Article	IF	CITATIONS
37	Seed dispersal by cattle may cause shrub encroachment of <i>Grewia flava</i> on southern Kalahari rangelands. Applied Vegetation Science, 2004, 7, 89-102.	1.9	40
38	AIR-MEDIATED POLLEN FLOW FROM GENETICALLY MODIFIED TO CONVENTIONAL CROPS. , 2007, 17, 431-440.		40
39	Statistical ecology comes of age. Biology Letters, 2014, 10, 20140698.	2.3	40
40	Responses of nectarâ€feeding birds to floral resources at multiple spatial scales. Ecography, 2016, 39, 619-629.	4.5	39
41	Environmental drivers of demographic variation across the global geographical range of 26 plant species. Journal of Ecology, 2016, 104, 331-342.	4.0	38
42	The geometry of habitat fragmentation: Effects of species distribution patterns on extinction risk due to habitat conversion. Ecology and Evolution, 2019, 9, 2775-2790.	1.9	37
43	A flexible modelling framework linking the spatio-temporal dynamics of plant genotypes and populations: Application to gene flow from transgenic forests. Ecological Modelling, 2007, 202, 476-486.	2.5	36
44	Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae. Diversity and Distributions, 2013, 19, 363-376.	4.1	33
45	Functional traits explain the Hutchinsonian niches of plant species. Clobal Ecology and Biogeography, 2020, 29, 534-545.	5.8	32
46	Movement upscaled – the importance of individual foraging movement for community response to habitat loss. Ecography, 2012, 35, 436-445.	4.5	31
47	Dealing with virtual aggregation – a new index for analysing heterogeneous point patterns. Ecography, 2008, 31, 545-555.	4.5	30
48	Global relationships in tree functional traits. Nature Communications, 2022, 13, .	12.8	29
49	Landscape structure and genetic architecture jointly impact rates of niche evolution. Ecography, 2014, 37, 1218-1229.	4.5	28
50	Seed dispersal by cattle may cause shrub encroachment of Grewia flava on southern Kalahari rangelands. Applied Vegetation Science, 2004, 7, 89.	1.9	27
51	Disentangling facilitation and seed dispersal from environmental heterogeneity as mechanisms generating associations between savanna plants. Journal of Vegetation Science, 2011, 22, 1038-1048.	2.2	27
52	Assessing the importance of seed immigration on coexistence of plant functional types in a species-rich ecosystem. Ecological Modelling, 2008, 213, 402-416.	2.5	26
53	Reward quality predicts effects of bird-pollinators on the reproduction of African Protea shrubs. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 209-217.	2.7	26
54	CONVERGENT AND CORRELATED EVOLUTION OF MAJOR LIFE-HISTORY TRAITS IN THE ANGIOSPERM GENUS <i>LEUCADENDRON</i> (PROTEACEAE). Evolution; International Journal of Organic Evolution, 2014, 68, 2775-2792.	2.3	25

#	Article	IF	CITATIONS
55	Mineral-Ecological Cropping Systems—A New Approach to Improve Ecosystem Services by Farming without Chemical Synthetic Plant Protection. Agronomy, 2021, 11, 1710.	3.0	25
56	How can we bring together empiricists and modellers in functional biodiversity research?. Basic and Applied Ecology, 2013, 14, 93-101.	2.7	24
57	Neighbourhood effects on plant reproduction: An experimental–analytical framework and its application to the invasive <i>Senecio inaequidens</i> . Journal of Ecology, 2018, 106, 761-773.	4.0	22
58	Fynbos Proteaceae as model organisms for biodiversity research and conservation. South African Journal of Science, 2012, 108, .	0.7	21
59	Coexistence of plant species in a biodiversity hotspot is stabilized by competition but not by seed predation. Oikos, 2017, 126, .	2.7	19
60	Long-Distance Seed Dispersal. , 0, , 204-237.		18
61	Recruitment requirements of the rare and threatened Juncus atratus. Flora: Morphology, Distribution, Functional Ecology of Plants, 2010, 205, 583-589.	1.2	17
62	Effects of Harvesting Flowers from Shrubs on the Persistence and Abundance of Wild Shrub Populations at Multiple Spatial Extents. Conservation Biology, 2011, 25, 73-84.	4.7	17
63	Biotic resistance or introduction bias? Immigrant plant performance decreases with residence times over millennia. Clobal Ecology and Biogeography, 2019, 28, 222-237.	5.8	17
64	Spatial patterns of plant association in grazed and ungrazed shrublands in the semi-arid Karoo, South Africa. Journal of Vegetation Science, 2000, 11, 253-258.	2.2	15
65	Polyandry in coal tits Parus ater: fitness consequences of putting eggs into multiple genetic baskets. Journal of Evolutionary Biology, 2007, 20, 1115-1125.	1.7	15
66	Effects of intraspecific and community density on the lifetime fecundity of long-lived shrubs. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 150-161.	2.7	15
67	A trade-off between primary and secondary seed dispersal by wind. Plant Ecology, 2019, 220, 541-552.	1.6	14
68	A bird pollinator shows positive frequency dependence and constancy of species choice in natural plant communities. Ecology, 2016, 97, 3110-3118.	3.2	13
69	Key impacts of climate engineering on biodiversity and ecosystems, with priorities for future research. Journal of Integrative Environmental Sciences, 0, , 1-26.	2.5	11
70	Life-History Traits Evolved Jointly with Climatic Niche and Disturbance Regime in the Genus <i>Leucadendron</i> (Proteaceae). American Naturalist, 2018, 191, 220-234.	2.1	11
71	The importance of individual movement and feeding behaviour for long-distance seed dispersal by red deer: a data-driven model. Movement Ecology, 2020, 8, 44.	2.8	11
72	Assessing the risk of gene flow from genetically modified trees carrying mitigation transgenes. Biological Invasions, 2008, 10, 281-290.	2.4	10

#	Article	IF	CITATIONS
73	Tree potential growth varies more than competition among spontaneously established forest stands of pedunculate oak (Quercus robur). Annals of Forest Science, 2020, 77, 1.	2.0	7
74	Shifts in plant functional community composition under hydrological stress strongly decelerate litter decomposition. Ecology and Evolution, 2020, 10, 5712-5724.	1.9	7
75	Inter―and intraspecific selection in alien plants: How population growth, functional traits and climate responses change with residence time. Global Ecology and Biogeography, 2021, 30, 429-442.	5.8	6
76	Simulating the spread and establishment of alien species along aquatic and terrestrial transport networks: A multiâ€pathway and highâ€resolution approach. Journal of Applied Ecology, 2022, 59, 1769-1780.	4.0	5
77	Effects of seed morphology and orientation on secondary seed dispersal by wind. Journal of Plant Ecology, 2022, 15, 1257-1272.	2.3	4
78	Rangeâ€wide population viability analyses reveal high sensitivity to wildflower harvesting in extreme environments. Journal of Applied Ecology, 2021, 58, 1399-1410.	4.0	2
79	Predicting the dynamics of establishing tree populations: A framework for statistical inference and lessons for data collection. Methods in Ecology and Evolution, 2021, 12, 1721-1733.	5.2	2
80	How random is dispersal? From stochasticity to process in the description of seed movement. , 2012, , 240-248.		2
81	Seed dispersal by wind decreases when plants are waterâ€stressed, potentially counteracting species coexistence and niche evolution. Ecology and Evolution, 2021, 11, 16239-16249.	1.9	2
82	Colonization and persistence ability explain the extent to which plant species fill their potential range. Global Ecology and Biogeography, 2007, .	5.8	0
83	The value of remotely sensed vs. field-surveyed habitat structure for predicting bird abundance: a case study in traditional orchards. Journal of Ornithology, 0, , 1.	1.1	0