Christof Taxis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/455839/publications.pdf

Version: 2024-02-01

394421 434195 3,678 32 19 31 citations h-index g-index papers 35 35 35 4248 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Lightâ€induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary <i>Saccharomyces cerevisiae</i> cultures. Biotechnology Journal, 2022, 17, e2100676.	3.5	3
2	An Optogenetic Toolbox for Synergistic Regulation of Protein Abundance. ACS Synthetic Biology, 2021, 10, 3411-3421.	3.8	4
3	An Optogenetic Tool for Induced Protein Stabilization Based on the Phaeodactylum tricornutum Aureochrome 1a Light–Oxygen–Voltage Domain. Journal of Molecular Biology, 2020, 432, 1880-1900.	4.2	22
4	Strategies to investigate protein turnover with fluorescent protein reporters in eukaryotic organisms. AIMS Biophysics, 2020, 7, 90-118.	0.6	9
5	Degradation of integral membrane proteins modified with the photosensitive degron module requires the cytosolic endoplasmic reticulum–associated degradation pathway. Molecular Biology of the Cell, 2019, 30, 2558-2570.	2.1	7
6	Optogenetic Downregulation of Protein Levels with an Ultrasensitive Switch. ACS Synthetic Biology, 2019, 8, 1026-1036.	3.8	24
7	Synthetic Control of Protein Degradation during Cell Proliferation and Developmental Processes. ACS Omega, 2019, 4, 2766-2778.	3.5	25
8	Proteasome Activity Is Influenced by the HECT_2 Protein Ipa1 in Budding Yeast. Genetics, 2018, 209, 157-171.	2.9	13
9	The Mitotic Exit Network Regulates Spindle Pole Body Selection During Sporulation of <i>Saccharomyces cerevisiae</i> . Genetics, 2017, 206, 919-937.	2.9	23
10	Development of a Synthetic Switch to Control Protein Stability in Eukaryotic Cells with Light. Methods in Molecular Biology, 2017, 1596, 241-255.	0.9	7
11	Biophotography: concepts, applications and perspectives. Applied Microbiology and Biotechnology, 2016, 100, 3415-3420.	3.6	4
12	Controlling Protein Activity and Degradation Using Blue Light. Methods in Molecular Biology, 2016, 1408, 67-78.	0.9	13
13	A safety catch for ornithine decarboxylase degradation. Microbial Cell, 2015, 2, 174-177.	3.2	2
14	The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion. ELife, 2015, 4, e08231.	6.0	62
15	Photo-sensitive degron variants for tuning protein stability by light. BMC Systems Biology, 2014, 8, 128.	3.0	56
16	A LOV2 Domain-Based Optogenetic Tool to Control Protein Degradation and Cellular Function. Chemistry and Biology, 2013, 20, 619-626.	6.0	227
17	A Tobacco Etch Virus Protease with Increased Substrate Tolerance at the P1' position. PLoS ONE, 2013, 8, e67915.	2.5	32
18	Acetate Regulation of Spore Formation Is under the Control of the Ras/Cyclic AMP/Protein Kinase A Pathway and Carbon Dioxide in Saccharomyces cerevisiae. Eukaryotic Cell, 2012, 11, 1021-1032.	3.4	22

#	Article	IF	CITATIONS
19	TIPI: TEV Protease-Mediated Induction of Protein Instability. Methods in Molecular Biology, 2012, 832, 611-626.	0.9	25
20	Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Systems Biology, 2010, 4, 176.	3.0	56
21	Efficient protein depletion by genetically controlled deprotection of a dormant Nâ€degron. Molecular Systems Biology, 2009, 5, 267.	7.2	92
22	Cytokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane. EMBO Journal, 2007, 26, 1843-1852.	7.8	32
23	System of centromeric, episomal, and integrative vectors based on drug resistance markers for <i>Saccharomyces cerevisiae</i> . BioTechniques, 2006, 40, 73-78.	1.8	174
24	Dynamic Organization of the Actin Cytoskeleton During Meiosis and Spore Formation in Budding Yeast. Traffic, 2006, 7, 1628-1642.	2.7	39
25	Nud1p, the yeast homolog of Centriolin, regulates spindle pole body inheritance in meiosis. EMBO Journal, 2006, 25, 3856-3868.	7.8	28
26	Spore number control and breeding in Saccharomyces cerevisiae. Journal of Cell Biology, 2005, 171, 627-640.	5.2	73
27	Regulation of exocytotic events by centrosome-analogous structures. Topics in Current Genetics, 2004, , 193-207.	0.7	4
28	A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast, 2004, 21, 947-962.	1.7	1,837
29	Use of Modular Substrates Demonstrates Mechanistic Diversity and Reveals Differences in Chaperone Requirement of ERAD. Journal of Biological Chemistry, 2003, 278, 35903-35913.	3.4	169
30	ER-Golgi Traffic Is a Prerequisite for Efficient ER Degradation. Molecular Biology of the Cell, 2002, 13, 1806-1818.	2.1	105
31	Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biology, 2002, 4, 134-139.	10.3	489
32	Development of an Optogenetic Tool to Regulate Protein Stability In Vivo., 0,, 118-131.		О