Sibylle Jablonka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4558306/publications.pdf Version: 2024-02-01

SIBVILE LABLONKA

#	Article	IF	CITATIONS
1	Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurological Research and Practice, 2022, 4, 2.	2.0	27
2	Impaired dynamic interaction of axonal endoplasmic reticulum and ribosomes contributes to defective stimulus–response in spinal muscular atrophy. Translational Neurodegeneration, 2022, 11, .	8.0	2
3	Pegylated Insulin-Like Growth Factor 1 attenuates Hair Cell Loss and promotes Presynaptic Maintenance of Medial Olivocochlear Cholinergic Fibers in the Cochlea of the Progressive Motor Neuropathy Mouse. Frontiers in Neurology, 2022, 13, .	2.4	1
4	Interaction of 7SK with the Smn complex modulates snRNP production. Nature Communications, 2021, 12, 1278.	12.8	23
5	Dynamic remodeling of ribosomes and endoplasmic reticulum in axon terminals of motoneurons. Journal of Cell Science, 2021, 134, .	2.0	14
6	Loss of full-length hnRNP R isoform impairs DNA damage response in motoneurons by inhibiting Yb1 recruitment to chromatin. Nucleic Acids Research, 2021, 49, 12284-12305.	14.5	10
7	R-Roscovitine Improves Motoneuron Function in Mouse Models for Spinal Muscular Atrophy. IScience, 2020, 23, 100826.	4.1	16
8	Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function. Acta Neuropathologica Communications, 2020, 8, 116.	5.2	55
9	Reply: Adult-onset distal spinal muscular atrophy: a new phenotype associated with KIF5A mutations. Brain, 2019, 142, e67-e67.	7.6	1
10	Hot-spot KIF5A mutations cause familial ALS. Brain, 2018, 141, 688-697.	7.6	167
11	Comprehensive analysis of the mutation spectrum in 301 German ALS families. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 817-827.	1.9	80
12	Impaired Local Translation of β-actin mRNA in Ighmbp2-Deficient Motoneurons: Implications for Spinal Muscular Atrophy with respiratory Distress (SMARD1). Neuroscience, 2018, 386, 24-40.	2.3	7
13	An open source tool for automatic spatiotemporal assessment of calcium transients and local â€~signal-close-to-noise' activity in calcium imaging data. PLoS Computational Biology, 2018, 14, e1006054.	3.2	35
14	Developmental regulation of SMN expression: pathophysiological implications and perspectives for therapy development in spinal muscular atrophy. Gene Therapy, 2017, 24, 506-513.	4.5	23
15	Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nature Communications, 2017, 8, 678.	12.8	59
16	Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease. Journal of Neuroscience, 2017, 37, 7948-7961.	3.6	15
17	BDNF/trkB Induction of Calcium Transients through Cav2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221). Frontiers in Molecular Neuroscience, 2017, 10, 346.	2.9	25
18	C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nature Neuroscience, 2016, 19, 1610-1618.	14.8	131

SIBYLLE JABLONKA

#	Article	IF	CITATIONS
19	Cochlear nucleus whole mount explants promote the differentiation of neuronal stem cells from the cochlear nucleus in co-culture experiments. Brain Research, 2015, 1616, 58-70.	2.2	8
20	Mosaic pattern of Cre recombinase expression in cochlear outer hair cells of the Brn3.1 Cre mouse. NeuroReport, 2015, 26, 309-313.	1.2	5
21	Dysregulated IGFBP5 expression causes axon degeneration and motoneuron loss in diabetic neuropathy. Acta Neuropathologica, 2015, 130, 373-387.	7.7	27
22	Presynaptic Localization of Smn and hnRNP R in Axon Terminals of Embryonic and Postnatal Mouse Motoneurons. PLoS ONE, 2014, 9, e110846.	2.5	54
23	Neurotrophic effects of taurine on spiral ganglion neurons in vitro. NeuroReport, 2014, 25, 1250-1254.	1.2	10
24	Effects of the neurotrophic factors BDNF, NT-3, and FGF2 on dissociated neurons of the cochlear nucleus. NeuroReport, 2014, 25, 960-964.	1.2	6
25	Differentiation defects in primary motoneurons from a SMARD1 mouse model that are insensitive to treatment with low dose PEGylated IGF1. Rare Diseases (Austin, Tex), 2014, 2, e29415.	1.8	2
26	Mechanisms for axon maintenance and plasticity in motoneurons: alterations in motoneuron disease. Journal of Anatomy, 2014, 224, 3-14.	1.5	14
27	Polyethylene glycol-coupled IGF1 delays motor function defects in a mouse model of spinal muscular atrophy with respiratory distress type 1. Brain, 2014, 137, 1374-1393.	7.6	30
28	Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons. BMC Neuroscience, 2014, 15, 70.	1.9	14
29	Fast motor axon loss in SMARD1 does not correspond to morphological and functional alterations of the NMJ. Neurobiology of Disease, 2013, 54, 169-182.	4.4	15
30	Mutation of the TBCE gene causes disturbance of microtubules in the auditory nerve and cochlear outer hair cell degeneration accompanied by progressive hearing loss in the pmn/pmn mouse. Experimental Neurology, 2013, 250, 333-340.	4.1	7
31	Cell-autonomous axon growth of young motoneurons is triggered by a voltage-gated sodium channel. Channels, 2013, 7, 51-56.	2.8	15
32	Role of Nav1.9 in activity-dependent axon growth in motoneurons. Human Molecular Genetics, 2012, 21, 3655-3667.	2.9	42
33	Analysis of European case-control studies suggests that common inherited variation in mitochondrial DNA is not involved in susceptibility to amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 341-346.	2.1	11
34	Lectin-based Isolation and Culture of Mouse Embryonic Motoneurons. Journal of Visualized Experiments, 2011, , .	0.3	17
35	Therapeutic effects of PEGylated insulin-like growth factor I in the pmn mouse model of motoneuron disease. Experimental Neurology, 2011, 232, 261-269.	4.1	23
36	Isolation and characterization of neural stem cells from the neonatal rat cochlear nucleus. Cell and Tissue Research, 2011, 343, 499-508.	2.9	20

SIBYLLE JABLONKA

#	Article	IF	CITATIONS
37	Growth behavior of cochlear nucleus neuronal cells on semiconductor substrates. Journal of Biomedical Materials Research - Part A, 2011, 97A, 158-166.	4.0	9
38	The spinal muscular atrophy disease protein SMN is linked to the rho-kinase pathway via profilin. Human Molecular Genetics, 2011, 20, 4865-4878.	2.9	120
39	Neuromuscular defects and breathing disorders in a new mouse model of spinal muscular atrophy. Neurobiology of Disease, 2010, 38, 125-135.	4.4	71
40	Isolation and enrichment of embryonic mouse motoneurons from the lumbar spinal cord of individual mouse embryos. Nature Protocols, 2010, 5, 31-38.	12.0	102
41	Stiff person syndrome-associated autoantibodies to amphiphysin mediate reduced GABAergic inhibition. Brain, 2010, 133, 3166-3180.	7.6	172
42	Ciliary neurotrophic factor-induced sprouting preserves motor function in a mouse model of mild spinal muscular atrophy. Human Molecular Genetics, 2010, 19, 973-986.	2.9	57
43	A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. Human Molecular Genetics, 2009, 18, 1524-1532.	2.9	106
44	IGHMBP2 is a ribosome-associated helicase inactive in the neuromuscular disorder distal SMA type 1 (DSMA1). Human Molecular Genetics, 2009, 18, 1288-1300.	2.9	88
45	Stiff person syndrome associated anti-amphiphysin antibodies reduce GABA associated [Ca2+]i rise in embryonic motoneurons. Neurobiology of Disease, 2009, 36, 191-199.	4.4	24
46	Valproic acid blocks excitability in SMA type I mouse motor neurons. Neurobiology of Disease, 2009, 36, 477-487.	4.4	21
47	Clinical variability in distal spinal muscular atrophy type 1 (DSMA1): determination of steady-state IGHMBP2 protein levels in five patients with infantile and juvenile disease. Journal of Molecular Medicine, 2009, 87, 31-41.	3.9	43
48	Adenosine receptor A _{2A} -R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17210-17215.	7.1	108
49	Large-scale pathways-based association study in amyotrophic lateral sclerosis. Brain, 2007, 130, 2292-2301.	7.6	32
50	Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy. Journal of Cell Biology, 2007, 179, 139-149.	5.2	154
51	Distinct and overlapping alterations in motor and sensory neurons in a mouse model of spinal muscular atrophy. Human Molecular Genetics, 2006, 15, 511-518.	2.9	77
52	Bag1 is essential for differentiation and survival of hematopoietic and neuronal cells. Nature Neuroscience, 2005, 8, 1169-1178.	14.8	115
53	Characterization of Ighmbp2 in motor neurons and implications for the pathomechanism in a mouse model of human spinal muscular atrophy with respiratory distress type 1 (SMARD1). Human Molecular Genetics, 2004, 13, 2031-2042.	2.9	82
54	Axonal defects in mouse models of motoneuron disease. Journal of Neurobiology, 2004, 58, 272-286.	3.6	82

SIBYLLE JABLONKA

#	ARTICLE	IF	CITATIONS
55	Molecular and cellular basis of spinal muscular atrophy. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 2003, 4, 144-149.	1.2	14
56	Smn, the spinal muscular atrophy–determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. Journal of Cell Biology, 2003, 163, 801-812.	5.2	588
57	A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. Journal of Cell Biology, 2003, 160, 41-52.	5.2	140
58	Missense mutation in the <i>tubulin-specific chaperone E</i> (<i>Tbce</i>) gene in the mouse mutant <i>progressive motor neuronopathy</i> , a model of human motoneuron disease. Journal of Cell Biology, 2002, 159, 563-569.	5.2	114
59	Gene targeting of Gemin2 in mice reveals a correlation between defects in the biogenesis of U snRNPs and motoneuron cell death. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10126-10131.	7.1	73
60	Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons?. Human Molecular Genetics, 2002, 11, 93-105.	2.9	250
61	A New Gene Family (FAM9) of Low-Copy Repeats in Xp22.3 Expressed Exclusively in Testis: Implications for Recombinations in This Region. Genomics, 2002, 80, 259-267.	2.9	51
62	Co-regulation of survival of motor neuron (SMN) protein and its interactor SIP1 during development and in spinal muscular atrophy. Human Molecular Genetics, 2001, 10, 497-505.	2.9	94
63	The role of SMN in spinal muscular atrophy. Journal of Neurology, 2000, 247, 137-142.	3.6	58
64	Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III. Human Molecular Genetics, 2000, 9, 341-346.	2.9	160
65	Oguchi disease: suggestion of linkage to markers on chromosome 2q Journal of Medical Genetics, 1995, 32, 396-398.	3.2	33