Yohei Takeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4557294/publications.pdf

Version: 2024-02-01

471509 526287 1,270 27 17 27 citations h-index g-index papers 27 27 27 2946 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	In vitro virucidal activityÂof the theaflavin-concentrated tea extract TY-1 against influenza A virus. Journal of Natural Medicines, 2022, 76, 152-160.	2.3	4
2	Impact of Theaflavins-Enriched Tea Leaf Extract TY-1 against Surrogate Viruses of Human Norovirus: In Vitro Virucidal Study. Pathogens, 2022, 11 , 533 .	2.8	4
3	Severe Acute Respiratory Syndrome Coronavirus-2 Inactivation Activity of the Polyphenol-Rich Tea Leaf Extract with Concentrated Theaflavins and Other Virucidal Catechins. Molecules, 2021, 26, 4803.	3.8	6
4	Saxifraga spinulosa-Derived Components Rapidly Inactivate Multiple Viruses Including SARS-CoV-2. Viruses, 2020, 12, 699.	3.3	15
5	Acidic electrolyzed water potently inactivates SARS-CoV-2 depending on the amount of free available chlorine contacting with the virus. Biochemical and Biophysical Research Communications, 2020, 530, 1-3.	2.1	41
6	Targeting Toll-like receptor 3 in dendritic cells for cancer immunotherapy. Expert Opinion on Biological Therapy, 2020, 20, 937-946.	3.1	19
7	A Toll-like receptor 3 (TLR3) agonist ARNAX for therapeutic immunotherapy. Advanced Drug Delivery Reviews, 2019, 147, 37-43.	13.7	26
8	Tollâ€like receptor 3 signal augments radiationâ€induced tumor growth retardation in a murine model. Cancer Science, 2018, 109, 956-965.	3.9	26
9	Adjuvant immunotherapy for cancer: both dendritic cell-priming and check-point inhibitor blockade are required for immunotherapy. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2018, 94, 153-160.	3.8	25
10	Toll-like receptor 2 ligand and interferon- \hat{l}^3 suppress anti-tumor T cell responses by enhancing the immunosuppressive activity of monocytic myeloid-derived suppressor cells. Oncolmmunology, 2018, 7, e1373231.	4.6	52
11	Vaccine adjuvant ARNAX promotes mucosal IgA production in influenza HA vaccination. Biochemical and Biophysical Research Communications, 2018, 506, 1019-1025.	2.1	9
12	Anti-inflammatory effects of olive-derived hydroxytyrosol on lipopolysaccharide-induced inflammation in RAW264.7 cells. Journal of Veterinary Medical Science, 2018, 80, 1801-1807.	0.9	26
13	Vaccine immunotherapy with ARNAX induces tumorâ€specific memory T cells and durable antiâ€tumor immunity in mouse models. Cancer Science, 2018, 109, 2119-2129.	3.9	22
14	Type I Interferon-Independent Dendritic Cell Priming and Antitumor T Cell Activation Induced by a Mycoplasma fermentans Lipopeptide. Frontiers in Immunology, 2018, 9, 496.	4.8	16
15	The second and third amino acids of Pam2 lipopeptides are key for the proliferation of cytotoxic T cells. Innate Immunity, 2018, 24, 323-331.	2.4	8
16	A TLR3-Specific Adjuvant Relieves Innate Resistance to PD-L1 Blockade without Cytokine Toxicity in Tumor Vaccine Immunotherapy. Cell Reports, 2017, 19, 1874-1887.	6.4	104
17	Toll-Like Receptor 3 Signal in Dendritic Cells Benefits Cancer Immunotherapy. Frontiers in Immunology, 2017, 8, 1897.	4.8	55
18	The TLR3/TICAM-1 signal constitutively controls spontaneous polyposis through suppression of c-Myc in Apc Min/+ mice. Journal of Biomedical Science, 2017, 24, 79.	7.0	2

YOHEI TAKEDA

#	Article	IF	CITATIONS
19	Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8+ T cells during vaccine immunotherapy. Journal of Experimental and Clinical Cancer Research, 2016, 35, 143.	8.6	21
20	Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature, 2016, 534, 402-406.	27.8	536
21	STING in tumor and host cells cooperatively work for NK cell-mediated tumor growth retardation. Biochemical and Biophysical Research Communications, 2016, 478, 1764-1771.	2.1	66
22	Biphasic function of TLR3 adjuvant on tumor and spleen dendritic cells promotes tumor T cell infiltration and regression in a vaccine therapy. Oncolmmunology, 2016, 5, e1188244.	4.6	41
23	Tumor vaccines with dsRNA adjuvant ARNAX induces antigen-specific tumor shrinkage without cytokinemia. Oncolmmunology, 2016, 5, e1043506.	4.6	12
24	Adjuvant for vaccine immunotherapy of cancer $\hat{a}\in$ focusing on Tollâ \in like receptor 2 and 3 agonists for safely enhancing antitumor immunity. Cancer Science, 2015, 106, 1659-1668.	3.9	61
25	Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling. Biochemical and Biophysical Research Communications, 2015, 457, 445-450.	2.1	35
26	Influence of olive-derived hydroxytyrosol on the toll-like receptor 4-dependent inflammatory response of mouse peritoneal macrophages. Biochemical and Biophysical Research Communications, 2014, 446, 1225-1230.	2.1	36
27	Lung Cytokine Gene Expression is Correlated with Increased Severity of Disease in a Novel H4N8 Influenza Virus Isolated from Shorebirds. Journal of Veterinary Medical Science, 2013, 75, 1341-1347.	0.9	2