Yohei Takeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4557294/publications.pdf Version: 2024-02-01

Υσηει Τλκέσλ

#	Article	IF	CITATIONS
1	Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature, 2016, 534, 402-406.	27.8	536
2	A TLR3-Specific Adjuvant Relieves Innate Resistance to PD-L1 Blockade without Cytokine Toxicity in Tumor Vaccine Immunotherapy. Cell Reports, 2017, 19, 1874-1887.	6.4	104
3	STING in tumor and host cells cooperatively work for NK cell-mediated tumor growth retardation. Biochemical and Biophysical Research Communications, 2016, 478, 1764-1771.	2.1	66
4	Adjuvant for vaccine immunotherapy of cancer – focusing on Tollâ€like receptor 2 and 3 agonists for safely enhancing antitumor immunity. Cancer Science, 2015, 106, 1659-1668.	3.9	61
5	Toll-Like Receptor 3 Signal in Dendritic Cells Benefits Cancer Immunotherapy. Frontiers in Immunology, 2017, 8, 1897.	4.8	55
6	Toll-like receptor 2 ligand and interferon-Î ³ suppress anti-tumor T cell responses by enhancing the immunosuppressive activity of monocytic myeloid-derived suppressor cells. Oncolmmunology, 2018, 7, e1373231.	4.6	52
7	Biphasic function of TLR3 adjuvant on tumor and spleen dendritic cells promotes tumor T cell infiltration and regression in a vaccine therapy. Oncolmmunology, 2016, 5, e1188244.	4.6	41
8	Acidic electrolyzed water potently inactivates SARS-CoV-2 depending on the amount of free available chlorine contacting with the virus. Biochemical and Biophysical Research Communications, 2020, 530, 1-3.	2.1	41
9	Influence of olive-derived hydroxytyrosol on the toll-like receptor 4-dependent inflammatory response of mouse peritoneal macrophages. Biochemical and Biophysical Research Communications, 2014, 446, 1225-1230.	2.1	36
10	Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling. Biochemical and Biophysical Research Communications, 2015, 457, 445-450.	2.1	35
11	Tollâ€like receptor 3 signal augments radiationâ€induced tumor growth retardation in a murine model. Cancer Science, 2018, 109, 956-965.	3.9	26
12	Anti-inflammatory effects of olive-derived hydroxytyrosol on lipopolysaccharide-induced inflammation in RAW264.7 cells. Journal of Veterinary Medical Science, 2018, 80, 1801-1807.	0.9	26
13	A Toll-like receptor 3 (TLR3) agonist ARNAX for therapeutic immunotherapy. Advanced Drug Delivery Reviews, 2019, 147, 37-43.	13.7	26
14	Adjuvant immunotherapy for cancer: both dendritic cell-priming and check-point inhibitor blockade are required for immunotherapy. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2018, 94, 153-160.	3.8	25
15	Vaccine immunotherapy with ARNAX induces tumorâ€specific memory T cells and durable antiâ€ŧumor immunity in mouse models. Cancer Science, 2018, 109, 2119-2129.	3.9	22
16	Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8+ T cells during vaccine immunotherapy. Journal of Experimental and Clinical Cancer Research, 2016, 35, 143.	8.6	21
17	Targeting Toll-like receptor 3 in dendritic cells for cancer immunotherapy. Expert Opinion on Biological Therapy, 2020, 20, 937-946.	3.1	19
18	Type I Interferon-Independent Dendritic Cell Priming and Antitumor T Cell Activation Induced by a Mycoplasma fermentans Lipopeptide. Frontiers in Immunology, 2018, 9, 496.	4.8	16

Υομεί Τακεδά

#	Article	IF	CITATIONS
19	Saxifraga spinulosa-Derived Components Rapidly Inactivate Multiple Viruses Including SARS-CoV-2. Viruses, 2020, 12, 699.	3.3	15
20	Tumor vaccines with dsRNA adjuvant ARNAX induces antigen-specific tumor shrinkage without cytokinemia. Oncolmmunology, 2016, 5, e1043506.	4.6	12
21	Vaccine adjuvant ARNAX promotes mucosal IgA production in influenza HA vaccination. Biochemical and Biophysical Research Communications, 2018, 506, 1019-1025.	2.1	9
22	The second and third amino acids of Pam2 lipopeptides are key for the proliferation of cytotoxic T cells. Innate Immunity, 2018, 24, 323-331.	2.4	8
23	Severe Acute Respiratory Syndrome Coronavirus-2 Inactivation Activity of the Polyphenol-Rich Tea Leaf Extract with Concentrated Theaflavins and Other Virucidal Catechins. Molecules, 2021, 26, 4803.	3.8	6
24	In vitro virucidal activityÂof the theaflavin-concentrated tea extract TY-1 against influenza A virus. Journal of Natural Medicines, 2022, 76, 152-160.	2.3	4
25	Impact of Theaflavins-Enriched Tea Leaf Extract TY-1 against Surrogate Viruses of Human Norovirus: In Vitro Virucidal Study. Pathogens, 2022, 11, 533.	2.8	4
26	Lung Cytokine Gene Expression is Correlated with Increased Severity of Disease in a Novel H4N8 Influenza Virus Isolated from Shorebirds. Journal of Veterinary Medical Science, 2013, 75, 1341-1347.	0.9	2
27	The TLR3/TICAM-1 signal constitutively controls spontaneous polyposis through suppression of c-Myc in Apc Min/+ mice. Journal of Biomedical Science, 2017, 24, 79.	7.0	2