Joel LeMaoult

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4556615/publications.pdf

Version: 2024-02-01

73 papers 5,900 citations

38 h-index 71 g-index

75 all docs

75 docs citations

75 times ranked 5271 citing authors

#	Article	IF	CITATIONS
1	Chronic lung allograft dysfunction is associated with an early increase of circulating cytotoxic CD4+CD57+ILT2+ T cells, selectively inhibited by the immune check-point HLA-G. Journal of Heart and Lung Transplantation, 2022, 41, 626-640.	0.6	8
2	Immunosuppressive Properties of Epidermal Keratinocytes Differ According to Their Immaturity Status. Frontiers in Immunology, 2022, 13, 786859.	4.8	2
3	First immunotherapeutic CAR-T cells against the immune checkpoint protein HLA-G., 2021, 9, e001998.		30
4	Role of the HLA-G immune checkpoint molecule in pregnancy. Human Immunology, 2021, 82, 353-361.	2.4	15
5	Human Keratinocytes Inhibit CD4+ T-Cell Proliferation through TGFB1 Secretion and Surface Expression of HLA-G1 and PD-L1 Immune Checkpoints. Cells, 2021, 10, 1438.	4.1	9
6	Tumor infiltrating and peripheral CD4+ILT2+ T cells are a cytotoxic subset selectively inhibited by HLA-G in clear cell renal cell carcinoma patients. Cancer Letters, 2021, 519, 105-116.	7.2	11
7	Skin Immunity and Tolerance: Focus on Epidermal Keratinocytes Expressing HLA-G. Frontiers in Immunology, 2021, 12, 772516.	4.8	16
8	Soluble HLA-G and HLA-G Bearing Extracellular Vesicles Affect ILT-2 Positive and ILT-2 Negative CD8 T Cells Complementary. Frontiers in Immunology, 2020, 11, 2046.	4.8	25
9	Comprehensive landscape of immune-checkpoints uncovered in clear cell renal cell carcinoma reveals new and emerging therapeutic targets. Cancer Immunology, Immunotherapy, 2020, 69, 1237-1252.	4.2	22
10	Inhibition of iNKT Cells by the HLA-G-ILT2 Checkpoint and Poor Stimulation by HLA-G-Expressing Tolerogenic DC. Frontiers in Immunology, 2020, 11, 608614.	4.8	11
11	Human Hepatocytes and Differentiated Adult-Derived Human Liver Stem/Progenitor Cells Display <i>In Vitro</i> Immunosuppressive Properties Mediated, at Least in Part, through the Nonclassical HLA Class I Molecule HLA-G. Journal of Immunology Research, 2019, 2019, 1-13.	2.2	11
12	CD8+PD-1–ILT2+ T Cells Are an Intratumoral Cytotoxic Population Selectively Inhibited by the Immune-Checkpoint HLA-G. Cancer Immunology Research, 2019, 7, 1619-1632.	3.4	62
13	Extended <i>HLAâ€G</i> haplotypes in patients with ageâ€related macular degeneration. Hla, 2018, 92, 83-89.	0.6	1
14	The HLA-G Genetic Contribution to Bipolar Disorder: A Trans-Ethnic Replication. Immunological Investigations, 2018, 47, 593-604.	2.0	13
15	Prediction of non-muscle-invasive bladder cancer recurrence by measurement of checkpoint HLAG's receptor ILT2 on peripheral CD8+ T cells. Oncotarget, 2018, 9, 33160-33169.	1.8	16
16	Expression and differential regulation of HLA-G isoforms in the retinal pigment epithelial cell line, ARPE-19. Human Immunology, 2017, 78, 414-420.	2.4	17
17	Novel landscape of HLAâ€G isoforms expressed in clear cell renal cell carcinoma patients. Molecular Oncology, 2017, 11, 1561-1578.	4.6	67
18	Intratumor heterogeneity of immune checkpoints in primary renal cell cancer: Focus on HLA-G/ILT2/ILT4. Oncolmmunology, 2017, 6, e1342023.	4.6	42

#	Article	IF	CITATIONS
19	Recombinant HLA-G as Tolerogenic Immunomodulant in Experimental Small Bowel Transplantation. PLoS ONE, 2016, 11, e0158907.	2.5	4
20	Multiplex bead-based immunoassay for the free soluble forms of the HLA-G receptors, ILT2 and ILT4. Human Immunology, 2016, 77, 720-726.	2.4	2
21	HLA-G. Advances in Immunology, 2015, 127, 33-144.	2.2	334
22	HLA-G expression levels influence the tolerogenic activity of human DC-10. Haematologica, 2015, 100, 548-557.	3.5	69
23	Pseudomonas aeruginosa Quorum Sensing Molecule N -(3-Oxododecanoyl)- I -Homoserine-Lactone Induces HLA-G Expression in Human Immune Cells. Infection and Immunity, 2015, 83, 3918-3925.	2.2	20
24	Trogocytic intercellular membrane exchanges among hematological tumors. Journal of Hematology and Oncology, 2015, 8, 24.	17.0	22
25	A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G. European Urology, 2015, 68, 267-279.	1.9	204
26	The Dual Role of HLA-G in Cancer. Journal of Immunology Research, 2014, 2014, 1-10.	2.2	95
27	In vivo identification of an <scp>HLA</scp> â€ <scp>G</scp> complex as ubiquitinated protein circulating in exosomes. European Journal of Immunology, 2013, 43, 1933-1939.	2.9	51
28	Synthetic HLAâ€G proteins for therapeutic use in transplantation. FASEB Journal, 2013, 27, 3643-3651.	0.5	34
29	The immunosuppressive molecule HLA-G and its clinical implications. Critical Reviews in Clinical Laboratory Sciences, 2012, 49, 63-84.	6.1	157
30	Multimeric structures of HLA-G isoforms function through differential binding to LILRB receptors. Cellular and Molecular Life Sciences, 2012, 69, 4041-4049.	5.4	83
31	HLAâ€G inhibition of NKâ€cell cytolytic function is uncoupled from tumor cell lipid raft reorganization. European Journal of Immunology, 2012, 42, 700-709.	2.9	16
32	The tolerogenic interplay(s) among HLA-G, myeloid APCs, and regulatory cells. Blood, 2011, 118, 6499-6505.	1.4	88
33	HLA-G: a look back, a look forward. Cellular and Molecular Life Sciences, 2011, 68, 337-340.	5.4	8
34	The role of HLA-G in immunity and hematopoiesis. Cellular and Molecular Life Sciences, 2011, 68, 353-368.	5.4	60
35	Inhibition of human VÎ ³ 9VÎ ² T-cell antitumoral activity through HLA-G: implications for immunotherapy of cancer. Cellular and Molecular Life Sciences, 2011, 68, 3385-3399.	5.4	63
36	Proper Regrafting of Ig-Like Transcript 2 after Trogocytosis Allows a Functional Cell–Cell Transfer of Sensitivity. Journal of Immunology, 2011, 186, 2210-2218.	0.8	29

#	Article	lF	Citations
37	Identification of Circulating Nonclassic Human Leukocyte Antigen G (HLA-G)–Like Molecules in Exudates. Clinical Chemistry, 2011, 57, 1013-1022.	3.2	20
38	HLA-G Expression in Human Embryonic Stem Cells and Preimplantation Embryos. Journal of Immunology, 2011, 186, 2663-2671.	0.8	73
39	Tolerogenic Function of Dimeric Forms of HLA-G Recombinant Proteins: A Comparative Study In Vivo. PLoS ONE, 2011, 6, e21011.	2.5	19
40	Different functional outcomes of intercellular membrane transfers to monocytes and T cells. Cellular and Molecular Life Sciences, 2010, 67, 1133-1145.	5.4	36
41	Recent advances on the non-classical major histocompatibility complex class I HLA-G molecule. Tissue Antigens, 2010, 75, 201-206.	1.0	81
42	ILT2/HLAâ€G interaction impairs NKâ€cell functions through the inhibition of the late but not the early events of the NKâ€cell activating synapse. FASEB Journal, 2010, 24, 689-699.	0.5	101
43	Membrane redistributions through multi-intercellular exchanges and serial trogocytosis. Cell Research, 2010, 20, 1239-1251.	12.0	20
44	Trogocytosis and NK Cells in Mouse and Man. , 2010, , 109-123.		0
45	Nitric oxide produces HLAâ€G nitration and induces metalloproteaseâ€dependent shedding creating a tolerogenic milieu. Immunology, 2009, 126, 436-445.	4.4	32
46	Human melanoma cell secreting human leukocyte antigen–G5 inhibit natural killer cell cytotoxicity by impairing lytic granules polarization toward target cell. Human Immunology, 2009, 70, 1000-1005.	2.4	26
47	HLA-G–dependent suppressor cells: Diverse by nature, function, and significance. Human Immunology, 2008, 69, 700-707.	2.4	86
48	HLA-G: from biology to clinical benefits. Trends in Immunology, 2008, 29, 125-132.	6.8	336
49	Beyond the increasing complexity of the immunomodulatory HLA-G molecule. Blood, 2008, 111, 4862-4870.	1.4	297
50	Immune regulation by pretenders: cell-to-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood, 2007, 109, 2040-2048.	1.4	236
51	CD3+CD4low and CD3+CD8low are induced by HLA-G: novel human peripheral blood suppressor T-cell subsets involved in transplant acceptance. Blood, 2007, 110, 3936-3948.	1.4	129
52	Exchanges of Membrane Patches (Trogocytosis) Split Theoretical and Actual Functions of Immune Cells. Human Immunology, 2007, 68, 240-243.	2,4	38
53	Maternal antigen presenting cells are a source of plasmatic HLA-G during pregnancy: Longitudinal study during pregnancy. Human Immunology, 2007, 68, 661-667.	2.4	62
54	Trogocytosis-based generation of suppressive NK cells. EMBO Journal, 2007, 26, 1423-1433.	7.8	210

#	Article	IF	CITATIONS
55	Research on HLA-G: an update. Tissue Antigens, 2007, 69, 207-211.	1.0	57
56	Expression of tolerogenic HLA-G molecules in cancer prevents antitumor responses. Seminars in Cancer Biology, 2007, 17, 413-421.	9.6	94
57	Regulatory role of tryptophan degradation pathway in HLA-G expression by human monocyte-derived dendritic cells. Molecular Immunology, 2006, 43, 2151-2160.	2.2	86
58	Intercellular exchanges of membrane patches (trogocytosis) highlight the next level of immune plasticity. Transplant Immunology, 2006, 17, 20-22.	1.2	44
59	Immuno-tolerogenic functions of HLA-G: Relevance in transplantation and oncology. Autoimmunity Reviews, 2005, 4, 503-509.	5.8	50
60	HLA-G5 expression by trophoblast cells: the facts. Molecular Human Reproduction, 2005, 11, 719-722.	2.8	13
61	Linking Two Immuno-Suppressive Molecules: Indoleamine 2,3 Dioxygenase Can Modify HLA-G Cell-Surface Expression 1. Biology of Reproduction, 2005, 73, 571-578.	2.7	30
62	HLAâ€C upâ€regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB Journal, 2005, 19, 1-23.	0.5	266
63	HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7064-7069.	7.1	302
64	Age-related CD8 T Cell Clonal Expansions Constrict CD8 T Cell Repertoire and Have the Potential to Impair Immune Defense. Journal of Experimental Medicine, 2004, 200, 1347-1358.	8.5	229
65	HLA-G in Transplantation: A Relevant Molecule for Inhibition of Graft Rejection?. American Journal of Transplantation, 2003, 3, 11-16.	4.7	67
66	Direct Link Between mhc Polymorphism, T Cell Avidity, and Diversity in Immune Defense. Science, 2002, 298, 1797-1800.	12.6	304
67	Distinct mRNA microarray profiles of tolerogenic dendritic cells. Human Immunology, 2001, 62, 1065-1072.	2.4	45
68	Functional Evidence That Conserved TCR CDRα3 Loop Docking Governs the Cross-Recognition of Closely Related Peptide:Class I Complexes. Journal of Immunology, 2001, 167, 836-843.	0.8	10
69	CD8+CD28-T suppressor cells and the induction of antigen-specific, antigen-presenting cell-mediated suppression of Th reactivity. Immunological Reviews, 2001, 182, 201-206.	6.0	173
70	Age-Related Dysregulation in CD8 T Cell Homeostasis: Kinetics of a Diversity Loss. Journal of Immunology, 2000, 165, 2367-2373.	0.8	94
71	Increased VH 11 and VH Q52 gene use by splenic B cells in old mice associated with oligoclonal expansions of CD5+ B cells. Mechanisms of Ageing and Development, 1998, 103, 111-121.	4.6	32
72	Heteroclitic Immunization Induces Tumor Immunity. Journal of Experimental Medicine, 1998, 188, 1553-1561.	8.5	191

#	Article	IF	CITATIONS
73	Effect of age on humoral immunity, selection of the B-cell repertoire and B-cell development. Immunological Reviews, 1997, 160, 115-126.	6.0	173