
Violaine Moreau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4556486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	1D continuous gel electrophoresis composition for the separation of deamidated proteins. Methods, 2022, 200, 23-30.	3.8	4
2	Discoidin Domain Receptor 2 orchestrates melanoma resistance combining phenotype switching and proliferation. Oncogene, 2022, 41, 2571-2586.	5.9	6
3	Silencing of RND3/RHOE inhibits the growth of human hepatocellular carcinoma and is associated with reversible senescence. Cancer Gene Therapy, 2022, 29, 437-444.	4.6	6
4	Pathophysiological functions of Rnd proteins. Small GTPases, 2021, 12, 336-357.	1.6	11
5	Reptin/RUVBL2 is required for hepatocyte proliferation in vivo, liver regeneration and homeostasis. Liver International, 2021, 41, 1423-1429.	3.9	4
6	Transient Activations of Rac1 at the Lamellipodium Tip Trigger Membrane Protrusion. Current Biology, 2019, 29, 2852-2866.e5.	3.9	38
7	p190RhoGAPs, the ARHGAP35- and ARHGAP5-Encoded Proteins, in Health and Disease. Cells, 2019, 8, 351.	4.1	31
8	Improved Electrophoretic Separation to Assist the Monitoring of Bcl-xL Post-Translational Modifications. International Journal of Molecular Sciences, 2019, 20, 5571.	4.1	11
9	Actin Depolymerization in Dedifferentiated Liver Sinusoidal Endothelial Cells Promotes Fenestrae Reâ€Formation. Hepatology Communications, 2019, 3, 213-219.	4.3	18
10	Regulation of Rho GTPase activity at the leading edge of migrating cells by p190RhoGAP. Small GTPases, 2019, 10, 99-110.	1.6	11
11	Combining laser capture microdissection and proteomics reveals an active translation machinery controlling invadosome formation. Nature Communications, 2018, 9, 2031.	12.8	43
12	STED microscopy: A simplified method for liver sinusoidal endothelial <i>fenestrae</i> analysis. Biology of the Cell, 2018, 110, 159-168.	2.0	7
13	Rnd3/RhoE expression is regulated by G-actin through MKL1-SRF signaling pathway. Experimental Cell Research, 2018, 370, 227-236.	2.6	8
14	2D and 3D Matrices to Study Linear Invadosome Formation and Activity. Journal of Visualized Experiments, 2017, , .	0.3	12
15	The microenvironment controls invadosome plasticity. Journal of Cell Science, 2016, 129, 1759-68.	2.0	53
16	TGF-β1 promotes linear invadosome formation in hepatocellular carcinoma cells, through DDR1 up-regulation and collagen I cross-linking. European Journal of Cell Biology, 2016, 95, 503-512.	3.6	41
17	Rnd3 in Cancer: A Review of the Evidence for Tumor Promoter or Suppressor. Molecular Cancer Research, 2016, 14, 1033-1044.	3.4	64
18	Cancer-associated mutations in the protrusion-targeting region of p190RhoGAP impact tumor cell migration. Journal of Cell Biology, 2016, 214, 859-873.	5.2	25

VIOLAINE MOREAU

#	Article	IF	CITATIONS
19	Meeting report – Imaging the Cell. Journal of Cell Science, 2015, 128, 3843-3847.	2.0	Ο
20	Type I collagen fibrils and discoidin domain receptor 1 set invadosomes straight. Molecular and Cellular Oncology, 2015, 2, e1004963.	0.7	5
21	Type I collagen fibrils: an inducer of invadosomes. Oncotarget, 2015, 6, 28519-28520.	1.8	7
22	Cdc42 and Tks5. Cell Adhesion and Migration, 2014, 8, 280-292.	2.7	39
23	Discoidin domain receptor 1 controls linear invadosome formation via a Cdc42–Tuba pathway. Journal of Cell Biology, 2014, 207, 517-533.	5.2	92
24	Extracellular matrix rigidity controls podosome induction in microvascular endothelial cells. Biology of the Cell, 2013, 105, 46-57.	2.0	53
25	A novel small-molecule screening strategy identifies mitoxantrone as a RhoGTPase inhibitor. Biochemical Journal, 2013, 450, 55-62.	3.7	15
26	Physiological type I collagen organization induces the formation of a novel class of linear invadosomes. Molecular Biology of the Cell, 2012, 23, 297-309.	2.1	84
27	Autocrine control of glioma cells adhesion/migration through Inositol Requiring enzyme 1α (IRE1α)-mediated cleavage of Secreted Protein Acidic Rich in Cysteine (SPARC) mRNA. Journal of Cell Science, 2012, 125, 4278-87.	2.0	96
28	Rnd3/RhoE Is down-regulated in hepatocellular carcinoma and controls cellular invasion. Hepatology, 2012, 55, 1766-1775.	7.3	53
29	Sodium fluoride induces podosome formation in endothelial cells. Biology of the Cell, 2010, 102, 489-498.	2.0	16
30	Rho GTPases in hepatocellular carcinoma. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1795, 137-151.	7.4	60
31	Regulatory signals for endothelial podosome formation. European Journal of Cell Biology, 2008, 87, 543-554.	3.6	21
32	p190B RhoGAP regulates endothelial-cell-associated proteolysis through MT1-MMP and MMP2. Journal of Cell Science, 2008, 121, 2054-2061.	2.0	43
33	Alterations in cytoskeletal protein expression by mycophenolic acid in human mesangial cells requires Rac inactivation. Biochemical Pharmacology, 2007, 73, 1491-1498.	4.4	11
34	A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester. Journal of Cell Science, 2006, 119, 769-781.	2.0	150
35	TGFβ1-induced aortic endothelial morphogenesis requires signaling by small GTPases Rac1 and RhoA. Experimental Cell Research, 2006, 312, 3604-3619.	2.6	24
36	Cdc42-driven podosome formation in endothelial cells. European Journal of Cell Biology, 2006, 85, 319-325.	3.6	39

VIOLAINE MOREAU

#	Article	IF	CITATIONS
37	Transforming Growth Factor β Induces Rosettes of Podosomes in Primary Aortic Endothelial Cells. Molecular and Cellular Biology, 2006, 26, 3582-3594.	2.3	155
38	Actin Can Reorganize into Podosomes in Aortic Endothelial Cells, a Process Controlled by Cdc42 and RhoA. Molecular and Cellular Biology, 2003, 23, 6809-6822.	2.3	180
39	Grb2 and Nck Act Cooperatively to Promote Actin-Based Motility of Vaccinia Virus. Current Biology, 2002, 12, 740-745.	3.9	135
40	A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biology, 2000, 2, 441-448.	10.3	321
41	Vaccinia virus infection disrupts microtubule organization and centrosome function. EMBO Journal, 2000, 19, 3932-3944.	7.8	151
42	The <i>Saccharomyces cerevisiae</i> Homologue of Human Wiskott–Aldrich Syndrome Protein Las17p Interacts with the Arp2/3 Complex. Molecular Biology of the Cell, 1999, 10, 3521-3538.	2.1	153
43	Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature, 1999, 401, 926-929.	27.8	394
44	In vitro approaches to study actin and microtubule dependent cell processes. Current Opinion in Cell Biology, 1999, 11, 152-158.	5.4	18
45	Tyrosine phosphorylation is required for actin-based motility of vaccinia but not Listeria or Shigella. Current Biology, 1999, 9, 89-S2.	3.9	105
46	Cdc42 is required for membrane dependent actin polymerization in vitro. FEBS Letters, 1998, 427, 353-356.	2.8	42
47	Ubiquitination Mediated by the Npi1p/Rsp5p Ubiquitin-protein Ligase Is Required for Endocytosis of the Yeast Uracil Permease. Journal of Biological Chemistry, 1996, 271, 10946-10952.	3.4	289