Carlos R VÃ;zquez De Aldana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4556321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eng2, a new player involved in feedback loop regulation of Cdc42 activity in fission yeast. Scientific Reports, 2021, 11, 17872.	3.3	1
2	A new toolkit for gene tagging in Candida albicans containing recyclable markers. PLoS ONE, 2019, 14, e0219715.	2.5	9
3	Signalling through the yeast MAPK Cell Wall Integrity pathway controls P-body assembly upon cell wall stress. Scientific Reports, 2019, 9, 3186.	3.3	16
4	Glucanases and Chitinases. Current Topics in Microbiology and Immunology, 2019, 425, 131-166.	1.1	15
5	The anillin-related Int1 protein and the Sep7 septin collaborate to maintain cellular ploidy in Candida albicans. Scientific Reports, 2018, 8, 2257.	3.3	5
6	A Single Nucleotide Polymorphism Uncovers a Novel Function for the Transcription Factor Ace2 during Candida albicans Hyphal Development. PLoS Genetics, 2015, 11, e1005152.	3.5	16
7	Regulation of Ace2-dependent genes requires components of the PBF complex in Schizosaccharomyces pombe. Cell Cycle, 2015, 14, 3124-3137.	2.6	9
8	Eng2 Is a Component of a Dynamic Protein Complex Required for Endocytic Uptake in Fission Yeast. Traffic, 2014, 15, 1122-1142.	2.7	7
9	The NDR/LATS Kinase Cbk1 Controls the Activity of the Transcriptional Regulator Bcr1 during Biofilm Formation in Candida albicans. PLoS Pathogens, 2012, 8, e1002683.	4.7	36
10	Conserved regulators of the cell separation process in Schizosaccharomyces. Fungal Genetics and Biology, 2012, 49, 235-249.	2.1	9
11	Integrating Cdk Signaling in Candida albicans Environmental Sensing Networks. Topics in Current Genetics, 2012, , 81-96.	0.7	0
12	CDK-dependent phosphorylation of Mob2 is essential for hyphal development in <i>Candida albicans</i> . Molecular Biology of the Cell, 2011, 22, 2458-2469.	2.1	43
13	Expression, stability, and replacement of glucan-remodeling enzymes during developmental transitions in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2011, 22, 1585-1598.	2.1	26
14	Characterization of Glycoside Hydrolase Family 5 Proteins in Schizosaccharomyces pombe. Eukaryotic Cell, 2010, 9, 1650-1660.	3.4	20
15	$\hat{I}^2(1,3)$ -Glucanosyl-Transferase Activity Is Essential for Cell Wall Integrity and Viability of Schizosaccharomyces pombe. PLoS ONE, 2010, 5, e14046.	2.5	32
16	β-Glucanase Eng2 Is Required for Ascus Wall Endolysis after Sporulation in the Fission Yeast Schizosaccharomyces pombe. Eukaryotic Cell, 2009, 8, 1278-1286.	3.4	27
17	Dbf2 is essential for cytokinesis and correct mitotic spindle formation in <i>Candida albicans</i> . Molecular Microbiology, 2009, 72, 1364-1378.	2.5	21
18	Fungal septins: one ring to rule it all?. Open Life Sciences, 2009, 4, 274-289.	1.4	3

Carlos R VÃizquez De Aldana

#	Article	IF	CITATIONS
19	Septins localize to microtubules during nutritional limitation in Saccharomyces cerevisiae. BMC Cell Biology, 2008, 9, 55.	3.0	27
20	The βâ€1,3â€glucanosyltransferase gas4p is essential for ascospore wall maturation and spore viability in <i>Schizosaccharomyces pombe </i> . Molecular Microbiology, 2008, 68, 1283-1299.	2.5	41
21	The <i>Schizosaccharomyces pombe</i> endoâ€1,3â€î²â€glucanase Eng1 contains a novel carbohydrate binding module required for septum localization. Molecular Microbiology, 2008, 69, 188-200.	2.5	34
22	Characterization of the endo-β-1,3-glucanase activity of S. cerevisiae Eng2 and other members of the GH81 family. Fungal Genetics and Biology, 2008, 45, 542-553.	2.1	46
23	Sep7 Is Essential to Modify Septin Ring Dynamics and Inhibit Cell Separation during <i>Candida albicans </i> Hyphal Growth. Molecular Biology of the Cell, 2008, 19, 1509-1518.	2.1	74
24	Cdc15 Is Required for Spore Morphogenesis Independently of Cdc14 in <i>Saccharomyces cerevisiae</i> . Genetics, 2007, 177, 281-293.	2.9	22
25	The Cdc14p phosphatase affects late cell-cycle events and morphogenesis in Candida albicans. Journal of Cell Science, 2006, 119, 1130-1143.	2.0	57
26	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
27	Characterization of the CaENG1 Gene Encoding an Endo-1,3-β-Glucanase Involved in Cell Separation in Candida albicans. Current Microbiology, 2005, 51, 385-392.	2.2	50
28	Ace2p Controls the Expression of Genes Required for Cell Separation inSchizosaccharomyces pombe. Molecular Biology of the Cell, 2005, 16, 2003-2017.	2.1	78
29	Rho4 GTPase Is Involved in Secretion of Glucanases during Fission Yeast Cytokinesis. Eukaryotic Cell, 2005, 4, 1639-1645.	3.4	40
30	Role of Septins and the Exocyst Complex in the Function of Hydrolytic Enzymes Responsible for Fission Yeast Cell Separation. Molecular Biology of the Cell, 2005, 16, 4867-4881.	2.1	84
31	Swm1p subunit of the APC/cyclosome is required for activation of the daughter-specific gene expression program mediated by Ace2p during growth at high temperature inSaccharomyces cerevisiae. Journal of Cell Science, 2004, 117, 545-557.	2.0	21
32	Characterization of a Saccharomyces cerevisiae thermosensitive lytic mutant leads to the identification of a new allele of the NUD1 gene. International Journal of Biochemistry and Cell Biology, 2004, 36, 2196-2213.	2.8	10
33	Swm1p, a subunit of the APC/cyclosome, is required to maintain cell wall integrity during growth at high temperature in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2004, 234, 371-378.	1.8	4
34	The endo-β-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation inSchizosaccharomyces pombe. Journal of Cell Science, 2003, 116, 1689-1698.	2.0	163
35	Eng1p, an Endo-1,3-β-Glucanase Localized at the Daughter Side of the Septum, Is Involved in Cell Separation in Saccharomyces cerevisiae. Eukaryotic Cell, 2002, 1, 774-786.	3.4	137
36	A Genomic Approach for the Identification and Classification of Genes Involved in Cell Wall Formation and Its Regulation inSaccharomyces cerevisiae. Comparative and Functional Genomics, 2001, 2, 124-142.	2.0	138

Carlos R VÃizquez De Aldana

#	Article	IF	CITATIONS
37	Disruption and basic phenotypic analysis of six novel genes from the left arm of chromosome XIV ofSaccharomyces cerevisiae. Yeast, 1999, 15, 63-72.	1.7	10
38	Disruption of six unknown open reading frames fromSaccharomyces cerevisiae reveals two genes involved in vacuolar morphogenesis and one gene required for sporulation. , 1999, 15, 155-164.		8
39	Cloning and characterization of 1,3-β-glucanase-encoding genes from non-conventional yeasts. Yeast, 1999, 15, 91-109.	1.7	21
40	Generation of null alleles for the functional analysis of six genes from the right arm ofSaccharomyces cerevisiae chromosome II. , 1999, 15, 615-623.		4
41	Cloning and characterization of theEXC1 gene from the yeastYarrowia lipolytica. Yeast, 1999, 15, 1631-1644.	1.7	17
42	Evidence that GCN1 and GCN20, Translational Regulators of <i>GCN4</i> , Function on Elongating Ribosomes in Activation of eIF21± Kinase GCN2. Molecular and Cellular Biology, 1997, 17, 4474-4489.	2.3	196
43	GCD10, a translational repressor of GCN4, is the RNA-binding subunit of eukaryotic translation initiation factor-3 Genes and Development, 1995, 9, 1781-1796.	5.9	70
44	Reduced efficiency in the glycosylation of the first sequon ofSaccharomyces cerevisiae exoglucanase leads to the synthesis and secretion of a new glycoform of the molecule. Yeast, 1993, 9, 221-234.	1.7	14
45	SSG1, a gene encoding a sporulation-specific 1,3-beta-glucanase in Saccharomyces cerevisiae. Journal of Bacteriology, 1993, 175, 3823-3837.	2.2	50
46	Genetic mapping of 1,3-β-glucanase-encoding genes in Saccharomyces cerevisiae. Current Genetics, 1992, 22, 283-288.	1.7	21
47	Nucleotide sequence of the exo-1,3-β-glucanase-encoding gene, EXG1, of the yeast Saccharomyces cerevisiae. Gene, 1991, 97, 173-182.	2.2	87
48	Synthesis and secretion of a Bacillus circulans WL-12 1,3-1,4-beta-D-glucanase in Escherichia coli. Journal of Bacteriology, 1990, 172, 2160-2167.	2.2	38
49	Nucleotide sequence of a 1, 3–1, 4-β-glucanase-encoding gene in Bacillus circulans WL-12. Nucleic Acids Research, 1990, 18, 4248-4248.	14.5	34
50	Heterogeneous glycosylation of theEXG1gene product accounts for the two extracellular exo-β-glucanases ofSaccharomyces cerevisiae. FEBS Letters, 1987, 220, 27-30.	2.8	24