Peter J Klar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4556161/publications.pdf

Version: 2024-02-01

218677 149698 3,525 131 26 56 h-index citations g-index papers 132 132 132 4464 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Embedding Quaternary V _{1â€"<i>x</i>>6"<i>y</i>} Sr _{<i>x</i>} W _{<i>y</i>} O ₂ into Multilayer Systems to Enhance Its Thermochromic Properties for Smart Glass Applications. ACS Applied Electronic Materials, 2022, 4, 513-520.	4.3	4
2	Combination of optical emission spectroscopy and multivariate data analysis techniques as a versatile non-invasive tool for characterizing xenon/krypton mixed gas plasma inside operating ion thrusters. Journal of Applied Physics, 2022, 131, .	2.5	4
3	Performance comparison of LaB6 and C12A7:e-emitters for space electric propulsion cathodes. IOP Conference Series: Materials Science and Engineering, 2022, 1226, 012093.	0.6	2
4	Phase Control of Multivalent Vanadium Oxides VO _{<i>x</i>} by lonâ€Beam Sputterâ€Deposition. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	4
5	Thrust measurement of an ion thruster by a force probe approach and comparison to a thrust balance. AIP Advances, 2022, 12, 045218.	1.3	1
6	Monitoring the thermally induced transition from sp3-hybridized into sp2-hybridized carbons. Carbon, 2021, 172, 214-227.	10.3	41
7	Patterning 2D materials for devices by mild lithography. RSC Advances, 2021, 11, 29887-29895.	3.6	5
8	Determining the band alignment of copper-oxide gallium-oxide heterostructures. Journal of Applied Physics, 2021, 129, .	2.5	6
9	Frequency- and magnetic-field-dependent properties of ordered magnetic nanoparticle arrangements. Physical Review B, 2021, 103, .	3.2	2
10	Atomically Thin Sheets of Leadâ€Free 1D Hybrid Perovskites Feature Tunable Whiteâ€Light Emission from Selfâ€Trapped Excitons. Advanced Materials, 2021, 33, e2100518.	21.0	15
11	Perovskite Photoemitters: Atomically Thin Sheets of Leadâ€Free 1D Hybrid Perovskites Feature Tunable Whiteâ€Light Emission from Selfâ€Trapped Excitons (Adv. Mater. 23/2021). Advanced Materials, 2021, 33, 2170177.	21.0	1
12	Global models for radio-frequency ion thrusters. EPJ Techniques and Instrumentation, $2021, 8, \ldots$	1.3	6
13	Analyzing Nanometer-Thin Cathode Particle Coatings for Lithium-Ion Batteriesâ€"The Example of TiO ₂ on NCM622. ACS Applied Energy Materials, 2021, 4, 7168-7181.	5.1	11
14	Non-invasive assessment of plasma parameters inside an ion thruster combining optical emission spectroscopy and principal component analysis. EPJ Techniques and Instrumentation, 2021, 8, .	1.3	8
15	Understanding the Impact of Microstructure on Charge Transport in Polycrystalline Materials Through Impedance Modelling. Journal of the Electrochemical Society, 2021, 168, 090516.	2.9	13
16	Polarization-dependence of the Raman response of free-standing strained Ce _{0.8} Gd _{0.2} O ₂ membranes. Physical Chemistry Chemical Physics, 2021, 23, 6903-6913.	2.8	1
17	Microscopic origin of near- and far-field contributions to tip-enhanced optical spectra of few-layer MoS2. Nanoscale, 2021, 13, 17116-17124.	5. 6	3
18	Taking internally wetted capillary electrospray emitters to the sub-ten-micrometer scale with 3D microlithography. AIP Advances, 2021, 11 , .	1.3	6

#	Article	IF	CITATIONS
19	Raman Spectroscopic Study of the Optical Phonons of Mg 2 Si $1\hat{a}$ ° x Sn x Solid Solutions. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900574.	2.4	3
20	Anomalous Angle-Dependent Magnetotransport Properties of Single InAs Nanowires. Nano Letters, 2020, 20, 618-624.	9.1	7
21	Controlled thin-film deposition of \hat{l}_{\pm} or \hat{l}_{\pm}^2 Ga2O3 by ion-beam sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	6
22	RuVO2 alloy epitaxial films: Lowered insulator–metal transition temperature and retained modulation capacity. Applied Physics Letters, 2020, 116, 192103.	3.3	8
23	Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer. Review of Scientific Instruments, 2020, 91, 061101.	1.3	96
24	Investigation of the dipole interaction in and between ordered arrangements of magnetic nanoparticles. Physical Review B, 2020, 101, .	3.2	7
25	Comparing Raman mapping and electron microscopy for characterizing compositional gradients in thermoelectric materials. Scripta Materialia, 2020, 179, 61-64.	5.2	6
26	Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon, 2020, 161, 359-372.	10.3	289
27	Assessing the benefits of customizable ion-beam profiles for homogeneously coating or treating the surfaces of non-planar substrates. Review of Scientific Instruments, 2020, 91, 013905.	1.3	2
28	Progress in Sputter Growth of β â€Ga 2 O 3 by Applying Pulsedâ€Mode Operation. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1901009.	1.8	4
29	The transport properties of InAs nanowires: an introduction to MnAs/InAs heterojunction nanowires for spintronics. Journal Physics D: Applied Physics, 2020, 53, 333002.	2.8	4
30	Performance of a rf neutralizer operating with noble gases and iodine. EPJ Applied Physics, 2020, 91, 10901.	0.7	7
31	Charge Transport in Single NCM Cathode Active Material Particles for Lithium-Ion Batteries Studied under Well-Defined Contact Conditions. ACS Energy Letters, 2019, 4, 2117-2123.	17.4	48
32	Consistent description of mesoscopic transport: Case study of current-dependent magnetoconductance in single GaN:Ge nanowires. Physical Review B, 2019, 100, .	3.2	6
33	Molecular propellants for ion thrusters. Plasma Sources Science and Technology, 2019, 28, 084001.	3.1	34
34	Thermally Switchable Terahertz Metasurface Devices. , 2019, , .		1
35	Global model of a radio-frequency ion thruster based on a holistic treatment of electron and ion density profiles. European Physical Journal D, 2019, 73, 1.	1.3	10
36	A surfaceâ€enhanced Ramanâ€spectroscopic study: Verification of the interparticle gap dependence of field enhancement by triangulation of spherical gold nanoparticle trimers. Journal of Raman Spectroscopy, 2019, 50, 1807-1816.	2.5	4

#	Article	lF	CITATIONS
37	Modifying graphene's lattice dynamics by hot-electron injection from single gold nanoparticles. Communications Physics, 2019, 2, .	5.3	14
38	Materials processing using radio-frequency ion-sources: Ion-beam sputter-deposition and surface treatment. Review of Scientific Instruments, 2019, 90, 023901.	1.3	27
39	Design and test of an apparatus for transient measurements of the thermalconductivity and volumetric heat capacity of solids. Turkish Journal of Physics, 2019, 43, 37-50.	1.1	0
40	Selective-area growth and transport properties of MnAs/InAs heterojunction nanowires. Journal of Materials Research, 2019, 34, 3863-3876.	2.6	7
41	Effect of the interface morphology on the lateral electron transport in (001) GaP/Si heterostructures. Journal of Applied Physics, 2019, 126, .	2.5	3
42	From stannous oxide to stannic oxide epitaxial films grown by pulsed laser deposition with a metal tin target. Applied Surface Science, 2019, 466, 765-771.	6.1	8
43	On the Growth of Stannic Oxide by Ion Beam Sputter Deposition (IBSD). Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700623.	1.8	4
44	Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers. Applied Physics Reviews, 2018, 5, .	11.3	242
45	Miniaturized Electrospray Thrusters. IEEE Transactions on Plasma Science, 2018, 46, 214-218.	1.3	12
46	In Situ Monitoring of Lateral Hydrogen Diffusion in Amorphous and Polycrystalline WO ₃ Thin Films. Advanced Materials Interfaces, 2018, 5, 1701587.	3.7	17
47	Performance of an iodine-fueled radio-frequency ion-thruster. European Physical Journal D, 2018, 72, 1.	1.3	26
48	Impact of Composition <i>x</i> on the Refractive Index of Ni <i>_x</i> O. Physica Status Solidi (B): Basic Research, 2018, 255, 1700463.	1.5	9
49	Analysis of the optical parameters of amorphous ternary oxides Sn 1 \hat{a} ° xZn xO and Sn 1 \hat{a} ° xNi xO processed by combinatorial ion-beam sputter deposition. Journal of Applied Physics, 2018, 124, 155701.	2.5	2
50	Band alignment of Al <i>x</i> Galâ€" <i>x</i> N/Cu2O heterojunctions in dependence on alloy composition <i>x</i> and its effect on the photovoltaic properties. Journal of Applied Physics, 2018, 123, .	2.5	2
51	Domain formation in rectangular magnetic nanoparticle assemblies. Physical Review B, 2018, 98, .	3.2	8
52	Improved thermoelectric properties of nanostructured composites out of Bilâ^'xSbx nanoparticles and carbon phases. AIP Advances, 2018, 8, 075319.	1.3	2
53	Structure and Thermoelectric Properties of Nanostructured Bilâ^'xSbx Alloys Synthesized by Mechanical Alloying. Journal of Electronic Materials, 2018, 47, 6007-6015.	2,2	4
54	Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications. Applied Physics Letters, 2017, 110, .	3.3	70

#	Article	IF	CITATIONS
55	Hierarchical structures of magnetic nanoparticles for controlling magnetic interactions on three different length scales. Journal of Applied Physics, 2017, 121, .	2.5	7
56	Nanostructured Composites of Bi _{1–<i>x</i>} Sb _{<i>x</i>} Nanoparticles and Carbon Nanotubes and the Characterization of Their Thermoelectric Properties. ACS Applied Materials & Amp; Interfaces, 2017, 9, 44756-44765.	8.0	19
57	NiO films on sapphire as potential antiferromagnetic pinning layers. Journal of Applied Physics, 2017, 122, .	2.5	16
58	Structural and Thermoelectric Properties of Nanostructured Nominally Stoichiometric Pb1â^'x Bi x Te Prepared by Mechanical Alloying. Journal of Electronic Materials, 2017, 46, 5781-5791.	2.2	9
59	Raman studies of the intermediate tin-oxide phase. Physical Review Materials, 2017, 1, .	2.4	54
60	Development of a Radio-Frequency Generator for RF Ion Thrusters. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2016, 14, Pb_33-Pb_39.	0.2	5
61	Electron spin flip Raman spectroscopy of the diluted magnetic semiconductor Zn _{1â€x} Mn _x Se below the metalâ€insulator transition. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 542-545.	0.8	0
62	Selective-area growth and magnetic characterization of MnAs/AlGaAs nanoclusters on insulating Al2O3 layers crystallized on Si(111) substrates. Applied Physics Letters, 2016, 108, 043108.	3.3	5
63	An advanced electric propulsion diagnostic (AEPD) platform for in-situ characterization of electric propulsion thrusters and ion beam sources. European Physical Journal D, 2016, 70, 1.	1.3	12
64	Self-Consistent Numerical OD/3D Hybrid Modeling of Radio-Frequency Ion Thrusters. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2016, 14, Pb_23-Pb_32.	0.2	0
65	Analysis of magnetic random telegraph noise in individual arrangements of a small number of coupled MnAs nanoclusters. Physical Review B, 2015, 92, .	3.2	3
66	Synthesis of tin oxides SnO _{2â€"<i>></i>} in the entire composition range (<i>×</i> = 0 to 1) by ionâ€beam sputterâ€deposition. Physica Status Solidi - Rapid Research Letters, 2015, 9, 326-330.	2.4	23
67	Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2. Journal of Applied Physics, 2015, 117, .	2.5	61
68	Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Physical Chemistry Chemical Physics, 2015, 17, 15903-15911.	2.8	66
69	Doping-Induced Universal Conductance Fluctuations in GaN Nanowires. Nano Letters, 2015, 15, 7822-7828.	9.1	18
70	Effect of Bismuth Nanotubes on the Thermoelectric Properties of BiSb Alloy Nanocomposites. Journal of Electronic Materials, 2014, 43, 2127-2133.	2.2	10
71	Correlation of intrinsic point defects and the Raman modes of cuprous oxide. Physical Review B, 2014, 90, .	3.2	88
72	Possibility of enhancing the thermoelectric figure of merit of ZnO by sulfur incorporation. Applied Physics Letters, $2013,103,103$	3.3	10

#	Article	IF	Citations
73	Effect of nanostructuring on the band structure and the galvanomagnetic properties in Bilâ´' <i>$xSbx$ alloys. Journal of Applied Physics, 2013, 114, .</i>	2.5	17
74	Magnetotransport in Zn1â^'xMnxSe:Cl under hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2013, 250, 732-735.	1.5	0
75	Ultrathin Terahertz Planar Elements. Advanced Optical Materials, 2013, 1, 186-191.	7.3	207
76	Scaling approach to hopping magnetoresistivity in dilute magnetic semiconductors. Physical Review B, 2013, 88, .	3.2	7
77	Local N environment in the dilute nitrides Ga(N,P), Ga(N,As), and Ga(N,Sb). Physica Status Solidi (B): Basic Research, 2013, 250, 755-759.	1.5	1
78	Comparison of the structural and thermoelectric properties of ball-milled and co-reduced Bi1-xSbx nanoalloys. AIP Conference Proceedings, 2012, , .	0.4	3
79	Copper oxide thin films by chemical vapor deposition: Synthesis, characterization and electrical properties. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 531-536.	1.8	59
80	Binary copper oxide semiconductors: From materials towards devices. Physica Status Solidi (B): Basic Research, 2012, 249, 1487-1509.	1.5	547
81	Effect of localized boron impurities on the line shape of the fundamental band gap transition in photomodulated reflectance spectra of (B,Ga,In)As. Physical Review B, 2011, 83, .	3.2	7
82	Evidence of localized boron impurity states in (B,Ga,In)As in magnetotransport experiments under hydrostatic pressure. Physical Review B, 2011, 83, .	3.2	8
83	Waveguide Fabry-Pérot microcavity arrays. Applied Physics Letters, 2011, 99, .	3.3	19
84	Influence of ordered arrangements of cluster chains on the hopping transport in GaAs:Mn/MnAs hybrids at low temperatures. Physical Review B, $2011, 83, .$	3.2	18
85	Effect of the cluster magnetization on the magnetotransport at low temperatures in ordered arrays of MnAs nanoclusters on (111) <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> GaAs. Physical Review B, 2011, 84, .	3.2	16
86	Optical and magnetic properties of quasi oneâ€dimensional dilute magnetic ZnMnS and antiferromagnetic MnS. Physica Status Solidi (B): Basic Research, 2010, 247, 2522-2536.	1.5	7
87	Optical studies on paramagnetic/superparamagnetic ZnO:Co films grown by magnetron sputtering. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1655-1657.	0.8	0
88	Comparison of the magnetic properties of GalnAs/MnAs and GaAs/MnAs hybrids with random and ordered arrangements of MnAs nanoclusters. Journal of Applied Physics, 2010, 107, 013701.	2.5	22
89	Trends in the electronic structure of dilute nitride alloys. Semiconductor Science and Technology, 2009, 24, 033001.	2.0	101
90	Ga(AsSb)/GaAs/(AlGa)As heterostructures: additional holeâ€confinement due to quantum islands. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 411-414.	0.8	0

#	Article	IF	CITATIONS
91	Optical properties of Ga(NAsP) lattice matched to Si. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2638-2643.	0.8	2
92	Nonferromagnetic nanocrystalline ZnO:Co thin films doped with Zn interstitials. Journal of Applied Physics, 2009, 105, 073918.	2.5	9
93	Zero-phonon lines of nitrogen-cluster states in GaNxAs1â^x: H identified by time-resolved photoluminescence. Journal of Materials Science, 2008, 43, 4344-4347.	3.7	2
94	Influence of nonâ€random incorporation of Mn ions on the magnetotransport properties of Ga _{1–<i>x</i>} Mn _{<i>x</i>} As alloys. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 819-823.	0.8	1
95	Metal insulator transition in nâ€BGalnAs. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 858-861.	0.8	4
96	Photoluminescence under magnetic field and hydrostatic pressure for probing the electronic properties of GaAsN. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 107-113.	1.8	4
97	Hole confinement in quantum islands in Ga(AsSb)â^•GaAsâ^•(AlGa)As heterostructures. Applied Physics Letters, 2008, 92, 161101.	3.3	3
98	Effects of artificially structured micrometer holes on the transport behavior of Al-doped ZnO layers. Applied Physics Letters, 2008, 93, .	3.3	14
99	Minimal number of atoms to constitute a magnet: Suppression of magnetic order in spherical MnS nanoparticles. Physical Review B, 2008, 78, .	3.2	9
100	Local structure of Mn in hydrogenated <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Ga</mml:mtext></mml:mrow><mml:mrow><physical .<="" 2008,="" 78,="" b,="" review="" td=""><td>> sraml:mn</td><td>>14×/mml:m</td></physical></mml:mrow></mml:msub></mml:mrow></mml:math>	> sra ml:mn	>14×/mml:m
101	Seebeck coefficients of n-type (Ga,In)(N,As), (B,Ga,In)As, and GaAs. Applied Physics Letters, 2008, 93, 042107.	3.3	17
102	Annealing-induced transition from a (311)A-oriented Ga0.98Mn0.02As alloy to a GaMnAs/MnAs hybrid structure studied by angle-dependent magnetotransport. Journal of Applied Physics, 2008, 103, .	2.5	5
103	Tailoring the magnetoresistance of MnAsâ^•GaAs:Mn granular hybrid nanostructures. Applied Physics Letters, 2008, 92, 223119.	3.3	29
104	Time-Resolved Photoluminescence of Nitrogen-Cluster States in Dilute $Ga(NAs)/GaAs$ Heterostructures., 2007,,.		0
105	Dimensional dependence of the dynamics of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">Mn</mml:mi><mml:mspace width="0.2em"></mml:mspace><mml:mn>3</mml:mn>d<mml:mn>5</mml:mn></mml:mrow><</mml:math>	3.2 /mml:math	13 1>luminesc
106	in (Zn, Mn)S nanowires and nanobelts. Physical Review B, 2007, 76, . Quantitative modeling of the annealing-induced changes of the magnetotransport in Ga1â^'xMnxAs alloys. Journal of Applied Physics, 2007, 102, 073712.	2.5	7
107	Crystalline ZnO with an enhanced surface area obtained by nanocasting. Applied Physics Letters, 2007, 90, 123108.	3.3	45
108	Mechanisms of enhancement of light emission in nanostructures of Il–VI compounds doped with manganese. Low Temperature Physics, 2007, 33, 192-196.	0.6	8

#	Article	IF	CITATIONS
109	Quantitative description of the temporal behavior of the internalMn3d5luminescence in ensembles ofZn0.99Mn0.01Squantum dots. Physical Review B, 2007, 75, .	3.2	12
110	Vibrational Spectroscopy of Periodic Mesoporous Organosilicas (PMOs) and Their Precursors:  A Closer Look. Journal of Physical Chemistry C, 2007, 111, 5648-5660.	3.1	52
111	Raman studies of ZnO:Co thin films. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 112-117.	1.8	67
112	Hydrostatic pressure experiments on dilute nitride alloys. Physica Status Solidi (B): Basic Research, 2007, 244, 24-31.	1.5	3
113	Vibrational properties of GaP and GaP1–xNx under hydrostatic pressures up to 30 GPa. Physica Status Solidi (B): Basic Research, 2007, 244, 336-341.	1.5	11
114	Effect of localized B and N states on the magneto-transport of (B,Ga,In)As and (Ga,In)(N,As). Physica Status Solidi (B): Basic Research, 2007, 244, 431-436.	1.5	10
115	Selective adsorption of solvents in a multiscale device. Microfluidics and Nanofluidics, 2007, 3, 299-305.	2.2	2
116	Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes. Journal of Materials Chemistry, 2006, 16, 2809-2818.	6.7	86
117	Concentration and size dependence of the dynamics of the Mn 3d5 luminescence in wire-like arrangements of (Zn,Mn)S nanoparticles. Physica Status Solidi (B): Basic Research, 2006, 243, 839-843.	1.5	4
118	Magnetic Interactions in Granular Paramagnetic–Ferromagnetic GaAs: Mn/MnAs Hybrids. Journal of Superconductivity and Novel Magnetism, 2006, 18, 315-320.	0.5	23
119	Experimental and theoretical investigation of the conduction band edge of GaNxP1â^'x. Physical Review B, 2006, 74, .	3.2	25
120	Comparison of the Magnetic and Optical Properties of Wideâ€Gap (II,Mn)VI Nanostructures Confined in Mesoporous Silica. European Journal of Inorganic Chemistry, 2005, 2005, 3597-3611.	2.0	28
121	Vibrational properties of GaAs 0.915 N 0.085 under hydrostatic pressures up to 20 GPa. Physical Review B, 2005, 71, .	3.2	14
122	Tuning of the averagep \hat{a} dexchange in (Ga,Mn)As by modification of the Mn electronic structure. Physical Review B, 2004, 70, .	3.2	15
123	Influence of magnetic-field-induced tuning of disorder and band structure on the magnetoresistance of paramagnetic dilute magnetic semiconductors. Physical Review B, 2004, 69, .	3.2	21
124	Influence of Codoping on the Magnetoresistance of Paramagnetic (Ga,Mn)As. Journal of Superconductivity and Novel Magnetism, 2003, 16, 159-162.	0.5	5
125	Regular Arrays of (Zn,Mn)S Quantum Wires with Well-Defined Diameters in the Nanometer Range. Journal of Superconductivity and Novel Magnetism, 2003, 16, 99-102.	0.5	3
126	Title is missing!. Journal of Superconductivity and Novel Magnetism, 2003, 16, 423-426.	0.5	2

PETER J KLAR

#	Article	IF	CITATION
127	Correlation between lasing properties and band alignment of edge emitting lasers with (Ga,In)(N,As)/Ga(N,As) active regions. Physica Status Solidi (B): Basic Research, 2003, 235, 417-422.	1.5	0
128	Controlled Iron-Doping of Macrotextured Nanocrystalline Titania. Chemistry of Materials, 2003, 15, 4028-4033.	6.7	68
129	Recent developments in metastable dilute-N III–V semiconductors. Progress in Solid State Chemistry, 2003, 31, 301-349.	7.2	34
130	Global changes of the band structure and the crystal lattice of Ga(N,As) due to hydrogenation. Physical Review B, 2003, 67, .	3.2	42
131	(Ga, In)(N, As)-fine structure of the band gap due to nearest-neighbor configurations of the isovalent nitrogen. Physical Review B, 2001, 64, .	3.2	233