Simon A Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4555822/publications.pdf

Version: 2024-02-01

516710 501196 1,387 29 16 28 citations g-index h-index papers 33 33 33 1269 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A mobile restriction–modification system provides phage defence and resolves an epigenetic conflict with an antagonistic endonuclease. Nucleic Acids Research, 2022, 50, 3348-3361.	14.5	17
2	PADLOC: a web server for the identification of antiviral defence systems in microbial genomes. Nucleic Acids Research, 2022, 50, W541-W550.	14.5	47
3	Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types. Nucleic Acids Research, 2021, 49, 10868-10878.	14.5	92
4	Evolution of virulence in a novel family of transmissible megaâ€plasmids. Environmental Microbiology, 2021, 23, 5289-5304.	3.8	5
5	SorTn-seq: a high-throughput functional genomics approach to discovering regulators of bacterial gene expression. Nature Protocols, 2021, 16, 4382-4418.	12.0	7
6	The Rsm (Csr) post-transcriptional regulatory pathway coordinately controls multiple CRISPR–Cas immune systems. Nucleic Acids Research, 2021, 49, 9508-9525.	14.5	9
7	Crystal structure of the anti-CRISPR repressor Aca2. Journal of Structural Biology, 2021, 213, 107752.	2.8	6
8	The Rcs stress response inversely controls surface and CRISPR–Cas adaptive immunity to discriminate plasmids and phages. Nature Microbiology, 2021, 6, 162-172.	13.3	32
9	A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nature Microbiology, 2020, 5, 48-55.	13.3	123
10	Functional genomics reveals the toxin–antitoxin repertoire and AbiE activity in Serratia. Microbial Genomics, 2020, 6, .	2.0	7
11	Complete Genome Sequences of the Escherichia coli Donor Strains ST18 and MFD pir. Microbiology Resource Announcements, 2020, 9, .	0.6	7
12	The autoregulator Aca2 mediates anti-CRISPR repression. Nucleic Acids Research, 2019, 47, 9658-9665.	14.5	49
13	Bacterial dormancy curbs phage epidemics. Nature, 2019, 570, 173-174.	27.8	12
14	Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas systems. RNA Biology, 2019, 16, 566-576.	3.1	45
15	Imprecise Spacer Acquisition Generates CRISPR-Cas Immune Diversity through Primed Adaptation. Cell Host and Microbe, 2019, 25, 250-260.e4.	11.0	54
16	AbiEi Binds Cooperatively to the Type IV abiE Toxin–Antitoxin Operator Via a Positively-Charged Surface and Causes DNA Bending and Negative Autoregulation. Journal of Molecular Biology, 2018, 430, 1141-1156.	4.2	20
17	Modular growth vessels for the cultivation of the cyanobacterium <i>Synechococcus</i> sp. PCC 7002. New Zealand Journal of Botany, 2017, 55, 14-24.	1.1	3
18	CRISPR-Cas: Adapting to change. Science, 2017, 356, .	12.6	323

#	Article	IF	CITATIONS
19	Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. ELife, 2017, 6, .	6.0	81
20	Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems. Molecular Cell, 2016, 64, 1102-1108.	9.7	183
21	Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR–Cas system. Nature Communications, 2016, 7, 12853.	12.8	125
22	Dynamics of Photosynthesis in a Glycogen-Deficient <i>glgC</i> Mutant of Synechococcus sp. Strain PCC 7002. Applied and Environmental Microbiology, 2015, 81, 6210-6222.	3.1	29
23	Characterization of a Synechocystis sp. PCC 6803 double mutant lacking the CyanoP and Ycf48 proteins of Photosystem II. Photosynthesis Research, 2015, 124, 217-229.	2.9	12
24	The importance of the hydrophilic region of PsbL for the plastoquinone electron acceptor complex of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1435-1446.	1.0	14
25	Removal of both Ycf48 and Psb27 in <i>Synechocystis</i> sp. PCC 6803 disrupts Photosystem II assembly and alters Q _A ^{â^3} oxidation in the mature complex. FEBS Letters, 2014, 588, 3751-3760.	2.8	28
26	Structure-Function Studies of the Photosystem II Extrinsic Subunits PsbQ and PsbP from the Cyanobacterium Synechocystis sp. PCC 6803. Advanced Topics in Science and Technology in China, 2013, , 86-90.	0.1	0
27	Solution structure of CyanoP from Synechocystis sp. PCC 6803: New insights on the structural basis for functional specialization amongst PsbP family proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1331-1338.	1.0	19
28	Crystal Structure of PsbQ from <i>Synechocystis</i> sp. PCC 6803 at 1.8 Ã: Implications for Binding and Function in Cyanobacterial Photosystem II. Biochemistry, 2010, 49, 2765-2767.	2.5	26
29	Adaptation by Type V-A and V-B CRISPR-Cas Systems Demonstrates Conserved Protospacer Selection Mechanisms Between Diverse CRISPR-Cas Types. CRISPR Journal, 0, , .	2.9	1