Sophie L Gautron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4555041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcription of the dystrophin gene in human muscle and non-muscle tissues. Nature, 1988, 333, 858-860.	27.8	760
2	Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology, 2006, 50, 941-952.	4.1	191
3	The glial voltage-gated sodium channel: cell- and tissue-specific mRNA expression Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7272-7276.	7.1	170
4	Organic cation transporter 2 controls brain norepinephrine and serotonin clearance and antidepressant response. Molecular Psychiatry, 2012, 17, 926-939.	7.9	125
5	Altered aminergic neurotransmission in the brain of organic cation transporter 3â€deficient mice. Journal of Neurochemistry, 2008, 106, 1471-1482.	3.9	99
6	Organic Cation Transporter 3 (Slc22a3) Is Implicated in Salt-Intake Regulation. Journal of Neuroscience, 2004, 24, 2846-2851.	3.6	97
7	Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism. Molecular Psychiatry, 2016, 21, 936-945.	7.9	85
8	Characterization of three optional promoters in the 5′ region of the human aldolase A gene. Journal of Molecular Biology, 1987, 197, 425-438.	4.2	78
9	Role of organic cation transporters (OCTs) in the brain. , 2015, 146, 94-103.		63
10	Brain organic cation transporter 2 controls response and vulnerability to stress and GSK3Î ² signaling. Molecular Psychiatry, 2015, 20, 889-900.	7.9	54
11	Neurochemical characterization of pathways expressing plasma membrane monoamine transporter in the rat brain. Neuroscience, 2007, 144, 616-622.	2.3	47
12	Interaction of antidepressant and antipsychotic drugs with the human organic cation transporters hOCT1, hOCT2 and hOCT3. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 1017-1023.	3.0	43
13	Molecular mechanisms of McArdle's disease (muscle glycogen phosphorylase deficiency). RNA and DNA analysis Journal of Clinical Investigation, 1987, 79, 275-281.	8.2	38
14	Antidepressive effects of targeting ELK-1 signal transduction. Nature Medicine, 2018, 24, 591-597.	30.7	33
15	Viral vectorâ€mediated Cre recombinase expression in substantia nigra induces lesions of the nigrostriatal pathway associated with perturbations of dopamineâ€related behaviors and hallmarks of programmed cell death. Journal of Neurochemistry, 2019, 150, 330-340.	3.9	32
16	Blockade of the highâ€affinity noradrenaline transporter (NET) by the selective 5â€HT reuptake inhibitor escitalopram: an <i>in vivo</i> microdialysis study in mice. British Journal of Pharmacology, 2013, 168, 103-116.	5.4	28
17	Antidepressant efficacy of a selective organic cation transporter blocker in a mouse model of depression. Molecular Psychiatry, 2020, 25, 1245-1259.	7.9	24
18	Regulation of the multiple promoters of the human aldolase A gene: response of its two ubiquitous promoters to agents promoting cell proliferation. Nucleic Acids Research, 1991, 19, 767-774.	14.5	22

#	Article	IF	CITATIONS
19	Inhibitory and facilitory actions of isocyanine derivatives at human and rat organic cation transporters 1, 2 and 3: A comparison to human α1- and α2-adrenoceptor subtypes. European Journal of Pharmacology, 2010, 634, 1-9.	3.5	20
20	Cartography of hevin-expressing cells in the adult brain reveals prominent expression in astrocytes and parvalbumin neurons. Brain Structure and Function, 2019, 224, 1219-1244.	2.3	20
21	Downregulation of basophil-derived IL-4 and inÂvivo TH2 IgE responses by serotonin and other organic cation transporter 3 ligands. Journal of Allergy and Clinical Immunology, 2011, 128, 864-871.e2.	2.9	14
22	Evidence for the presence of ?-subunit of hexosaminidase in a case of Sandhoff disease using a blotting technique. Human Genetics, 1983, 63, 258-61.	3.8	9
23	High frequency of-β-hexosaminidase deficiency in lymphoblastoid cell lines. Biochemical and Biophysical Research Communications, 1984, 119, 841-849.	2.1	7
24	Genetic and epigenetic control of the Na-G ion channel expression in glia. Glia, 2001, 33, 230-240.	4.9	6
25	The Na-G Ion Channel Is Transcribed from a Single Promoter Controlled by Distinct Neuron- and Schwann Cell-Specific DNA Elements. Journal of Neurochemistry, 2002, 73, 2575-2585.	3.9	5
26	Contrasting Functions of Mitogen- and Stress-activated Protein Kinases 1 and 2 in Recognition Memory and In Vivo Hippocampal Synaptic Transmission. Neuroscience, 2021, 463, 70-85.	2.3	4
27	Effects of antisera raised against native and denatured human α-glucosidase and β-hexosaminidases on native enzyme activity. Clinica Chimica Acta, 1984, 140, 239-246.	1.1	1
28	Molecular Heterogeneity of MArdle's Disease. Annals of the New York Academy of Sciences, 1986, 478, 272-273.	3.8	1
29	Molecular heterogeneity of McArdle disease. Journal of Inherited Metabolic Disease, 1986, 9, 287-290.	3.6	1
30	Trace Amine-Associated Receptor 1 Regulates Central Effects of Monoamine Oxidase Inhibitors: Involvement of Tyramine and Glutamate. Biological Psychiatry, 2021, 90, 2-3.	1.3	1
31	Immunohistochemical Methods for the Study of the Expression of Low-Affinity Monoamine Transporters in the Brain. Neuromethods, 2016, , 91-108.	0.3	0

Organic Cation Transporters (OCTs) as Modulators of Behavior and Mood. , 2016, , 187-204.

0