
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4553925/publications.pdf Version: 2024-02-01

Πιλημια Ιιλής

#	Article	IF	CITATIONS
1	Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Medicine, 2005, 11, 1173-1179.	30.7	1,291
2	Hyaluronan as an Immune Regulator in Human Diseases. Physiological Reviews, 2011, 91, 221-264.	28.8	848
3	Hyaluronan in Tissue Injury and Repair. Annual Review of Cell and Developmental Biology, 2007, 23, 435-461.	9.4	727
4	Resolution of Lung Inflammation by CD44. Science, 2002, 296, 155-158.	12.6	611
5	Pulmonary fibrosis: patterns and perpetrators. Journal of Clinical Investigation, 2012, 122, 2756-2762.	8.2	429
6	Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. Cell Reports, 2018, 22, 3625-3640.	6.4	392
7	Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. Journal of Experimental Medicine, 2011, 208, 1459-1471.	8.5	322
8	Regulation of pulmonary fibrosis by chemokine receptor CXCR3. Journal of Clinical Investigation, 2004, 114, 291-299.	8.2	276
9	Small Interfering RNA Targeting Heme Oxygenase-1 Enhances Ischemia-Reperfusion-induced Lung Apoptosis. Journal of Biological Chemistry, 2004, 279, 10677-10684.	3.4	230
10	Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nature Medicine, 2016, 22, 1285-1293.	30.7	211
11	Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 707-717.	5.6	204
12	Follistatin-like 1 (Fstl1) is a bone morphogenetic protein (BMP) 4 signaling antagonist in controlling mouse lung development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7058-7063.	7.1	197
13	Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Science Translational Medicine, 2019, 11, .	12.4	189
14	The Role of Hyaluronan Degradation Products as Innate Alloimmune Agonists. American Journal of Transplantation, 2006, 6, 2622-2635.	4.7	183
15	Airway Epithelial Progenitors Are Region Specific and Show Differential Responses to Bleomycin-Induced Lung Injury. Stem Cells, 2012, 30, 1948-1960.	3.2	171
16	Hyaluronan as a therapeutic target in human diseases. Advanced Drug Delivery Reviews, 2016, 97, 186-203.	13.7	167
17	Extracellular Superoxide Dismutase Inhibits Inflammation by Preventing Oxidative Fragmentation of Hyaluronan. Journal of Biological Chemistry, 2008, 283, 6058-6066.	3.4	159
18	Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4. Journal of Clinical Investigation, 2010, 120, 2049-2057.	8.2	140

#	Article	IF	CITATIONS
19	Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. Journal of Experimental Medicine, 2015, 212, 235-252.	8.5	130
20	The role of Toll-like receptors in non-infectious lung injury. Cell Research, 2006, 16, 693-701.	12.0	129
21	CD44 Is a Negative Regulator of Acute Pulmonary Inflammation and Lipopolysaccharide-TLR Signaling in Mouse Macrophages. Journal of Immunology, 2007, 178, 2469-2475.	0.8	127
22	Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Research, 2014, 24, 1374-1377.	12.0	125
23	Single-Cell Reconstruction of Human Basal Cell Diversity in Normal and Idiopathic Pulmonary Fibrosis Lungs. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1540-1550.	5.6	107
24	Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. Journal of Clinical Investigation, 2016, 126, 3063-3079.	8.2	101
25	Comprehensive microRNA analysis in bleomycin-induced pulmonary fibrosis identifies multiple sites of molecular regulation. Physiological Genomics, 2011, 43, 479-487.	2.3	95
26	Matrix Regulation of Lung Injury, Inflammation, and Repair: The Role of Innate Immunity. Proceedings of the American Thoracic Society, 2006, 3, 401-404.	3.5	93
27	MicroRNA-127 Inhibits Lung Inflammation by Targeting IgG FcÎ ³ Receptor I. Journal of Immunology, 2012, 188, 2437-2444.	0.8	93
28	Hyaluronan synthase $2\hat{a}\in$ "mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Science Translational Medicine, 2019, 11, .	12.4	91
29	Role of hyaluronan and hyaluronan-binding proteins inÂhuman asthma. Journal of Allergy and Clinical Immunology, 2011, 128, 403-411.e3.	2.9	89
30	β-Arrestin Deficiency Protects Against Pulmonary Fibrosis in Mice and Prevents Fibroblast Invasion of Extracellular Matrix. Science Translational Medicine, 2011, 3, 74ra23.	12.4	81
31	Hyaluronan synthase 2 regulates fibroblast senescence in pulmonary fibrosis. Matrix Biology, 2016, 55, 35-48.	3.6	72
32	Group B Streptococcus Evades Host Immunity by Degrading Hyaluronan. Cell Host and Microbe, 2015, 18, 694-704.	11.0	66
33	Targeting of TAM Receptors Ameliorates Fibrotic Mechanisms in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1443-1456.	5.6	66
34	PD-L1 on invasive fibroblasts drives fibrosis in a humanized model of idiopathic pulmonary fibrosis. JCI Insight, 2019, 4, .	5.0	64
35	Recruited Exudative Macrophages Selectively Produce CXCL10 after Noninfectious Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 781-788.	2.9	57
36	Regulation of Nonâ€Infectious Lung Injury, Inflammation, and Repair by the Extracellular Matrix Glycosaminoglycan Hyaluronan. Anatomical Record, 2010, 293, 982-985.	1.4	54

#	Article	IF	CITATIONS
37	Syndecan-1 promotes lung fibrosis by regulating epithelial reprogramming through extracellular vesicles. JCI Insight, 2019, 4, .	5.0	50
38	Serum Inter–α-Trypsin Inhibitor and Matrix Hyaluronan Promote Angiogenesis in Fibrotic Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 939-947.	5.6	49
39	MicroRNA-29c Prevents Pulmonary Fibrosis by Regulating Epithelial Cell Renewal and Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 721-732.	2.9	46
40	Categorization of lung mesenchymal cells in development and fibrosis. IScience, 2021, 24, 102551.	4.1	46
41	A macrophage subpopulation recruited by CC chemokine ligand-2 clears apoptotic cells in noninfectious lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L933-L940.	2.9	45
42	miR-130b-3p Modulates Epithelial-Mesenchymal Crosstalk in Lung Fibrosis by Targeting IGF-1. PLoS ONE, 2016, 11, e0150418.	2.5	45
43	CD44 Deficiency Is Associated with Increased Bacterial Clearance but Enhanced Lung Inflammation During Gram-Negative Pneumonia. American Journal of Pathology, 2010, 177, 2483-2494.	3.8	43
44	Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis. Respiratory Research, 2015, 16, 124.	3.6	39
45	Syndecan-1 Controls Lung Tumorigenesis by Regulating miRNAs Packaged in Exosomes. American Journal of Pathology, 2018, 188, 1094-1103.	3.8	38
46	Regulation of pulmonary fibrosis by chemokine receptor CXCR3. Journal of Clinical Investigation, 2004, 114, 291-299.	8.2	38
47	A Critical Regulatory Role for Macrophage Migration Inhibitory Factor in Hyperoxia-Induced Injury in the Developing Murine Lung. PLoS ONE, 2013, 8, e60560.	2.5	38
48	miR-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways. JCI Insight, 2016, 1, e90301.	5.0	37
49	The ZIP8/SIRT1 axis regulates alveolar progenitor cell renewal in aging and idiopathic pulmonary fibrosis. Journal of Clinical Investigation, 2022, 132, .	8.2	37
50	Autocrine Transforming Growth Factor α Provides a Growth Advantage to Malignant Cells by Facilitating Re-entry into the Cell Cycle from Suboptimal Growth States. Journal of Biological Chemistry, 1998, 273, 31471-31479.	3.4	35
51	Methylation-mediated BMPER expression in fibroblast activation in vitro and lung fibrosis in mice in vivo. Scientific Reports, 2015, 5, 14910.	3.3	35
52	Effect of Azithromycin on Patients with Diffuse Panbronchiolitis: Retrospective Study of 51 Cases. Internal Medicine, 2011, 50, 1663-1669.	0.7	33
53	Rapamycin Inhibits Transforming Growth Factor β1-Induced Fibrogenesis in Primary Human Lung Fibroblasts. Yonsei Medical Journal, 2013, 54, 437.	2.2	29
54	Defective cleavage of membrane bound TGFα leads to enhanced activation of the EGF receptor in malignant cells. Oncogene, 2000, 19, 1901-1914.	5.9	27

#	Article	IF	CITATIONS
55	Rapamycin increases CCN2 expression of lung fibroblasts via phosphoinositide 3-kinase. Laboratory Investigation, 2015, 95, 846-859.	3.7	25
56	Human leukocyte antigen-A, -B, and -DRB1 alleles and sarcoidosis in Chinese Han subjects. Human Immunology, 2011, 72, 571-575.	2.4	24
57	Creation of Lung-Targeted Dexamethasone Immunoliposome and Its Therapeutic Effect on Bleomycin-Induced Lung Injury in Rats. PLoS ONE, 2013, 8, e58275.	2.5	24
58	β-Arrestins in the Immune System. Progress in Molecular Biology and Translational Science, 2013, 118, 359-393.	1.7	21
59	CD44high alveolar type II cells show stem cell properties during steady-state alveolar homeostasis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L41-L51.	2.9	18
60	Mitogen-activated Protein Kinase–activated Protein Kinase 2 Inhibition Attenuates Fibroblast Invasion and Severe Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 41-48.	2.9	18
61	Targeting FSTL1 for Multiple Fibrotic and Systemic Autoimmune Diseases. Molecular Therapy, 2021, 29, 347-364.	8.2	18
62	Expression of TGFα autocrine activity in human colon carcinoma CBS cells is autoregulated and independent of exogenous epidermal growth factor. Journal of Cellular Physiology, 1998, 175, 174-183.	4.1	17
63	Innate immune activation potentiates alloimmune lung disease independent of chemokine (C-X-C motif) receptor 3. Journal of Heart and Lung Transplantation, 2011, 30, 717-725.	0.6	17
64	Meta-Analysis of Genetic Programs between Idiopathic Pulmonary Fibrosis and Sarcoidosis. PLoS ONE, 2013, 8, e71059.	2.5	17
65	Targeting Follistatin like 1 ameliorates liver fibrosis induced by carbon tetrachloride through TGF-1²1-miR29a in mice. Cell Communication and Signaling, 2020, 18, 151.	6.5	16
66	A Long Noncoding RNA links TGF-Î ² Signaling in Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 123-125.	5.6	15
67	TRIM72 promotes alveolar epithelial cell membrane repair and ameliorates lung fibrosis. Respiratory Research, 2020, 21, 132.	3.6	13
68	VEGF receptor 2 (KDR) protects airways from mucus metaplasia through a Sox9-dependent pathway. Developmental Cell, 2021, 56, 1646-1660.e5.	7.0	13
69	Long-Term Exposure of Chemokine CXCL10 Causes Bronchiolitis-like Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 592-598.	2.9	12
70	Proliferative regulation of alveolar epithelial type 2 progenitor cells by human <i>Scnn1d</i> gene. Theranostics, 2019, 9, 8155-8170.	10.0	12
71	Mesenchymal growth hormone receptor deficiency leads to failure of alveolar progenitor cell function and severe pulmonary fibrosis. Science Advances, 2021, 7, .	10.3	10
72	Abnormal respiratory progenitors in fibrotic lung injury. Stem Cell Research and Therapy, 2022, 13, 64.	5.5	10

#	Article	IF	CITATIONS
73	Antibody-mediated depletion of CCR10+ EphA3+ cells ameliorates fibrosis in IPF. JCI Insight, 2021, 6, .	5.0	9
74	G protein-coupled receptor 56 regulates matrix production and motility of lung fibroblasts. Experimental Biology and Medicine, 2014, 239, 686-696.	2.4	8
75	Tsp1 promotes alveolar stem cell proliferation and its down-regulation relates to lung inflammation in intralobar pulmonary sequestration. Oncotarget, 2017, 8, 64867-64877.	1.8	8
76	Apical Secretion of FSTL1 in the Respiratory Epithelium for Normal Lung Development. PLoS ONE, 2016, 11, e0158385.	2.5	5
77	Targeted <i>HAS2</i> Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 702-710.	2.9	5
78	Disruption of respiratory epithelial basement membrane in COVID-19 patients. Molecular Biomedicine, 2021, 2, 8.	4.4	4
79	Stem Cells and Progenitor Cells in Interstitial Lung Disease. , 2022, , 158-168.		2
80	CXCR3-Chemokine Pathway in a Model of Murine Alloimmune Lymphocytic Bronchiolitis (AlloLB) , 2009, , .		0
81	Role of Endoplasmic Reticulum Stress In The Pathogenesis Of Acute Exacerbations Of Pulmonary Fibrosis. , 2010, , .		0
82	Unrelenting Lung Fibrosis Requires An Invasive Myofibroblast Phenotype Regulated By Hyaluronan And CD44. , 2010, , .		0
83	A Beneficial Role Of Mir-29 In Limiting Lung Injury And Fibrosis. , 2010, , .		0
84	Exudative Macrophages But Not Alveolar Macrophages are The Main Source Of IP-10 After Non-infectious/Fibrotic Lung Injury. , 2010, , .		0
85	Human Leukocyte Antigen-DRB1 Alleles Influence Diffuse Panbronchiolitis In Chinese Han Subjects. , 2011, , .		0
86	Follistatin-Like 1 Promotes TGF-²1-Induced Epithelial-Mesenchymal Transition In A549 Cells. , 2012, , .		0
87	Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. Journal of Cell Biology, 2011, 194, i3-i3.	5.2	0
88	Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. Journal of Cell Biology, 2015, 208, 2082OIA1.	5.2	0
89	Innate Immune Regulation of Lung Injury and Repair. , 2006, , 110-117.		0