Guichuan Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4553401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface Passivation Toward Efficient and Stable Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	12.8	46
2	Ecofriendly Hydroxyalkyl Cellulose Additives for Efficient and Stable <scp>MAPbI₃</scp> â€Based Inverted Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	12.8	6
3	Overcoming the Limitation of Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells Through Using Mesoporous TiO ₂ Electron Extraction Layer. Energy and Environmental Materials, 2022, 5, 1317-1322.	12.8	17
4	Recent Advances in Blue Perovskite Quantum Dots for Lightâ€Emitting Diodes. Small, 2022, 18, e2103527.	10.0	43
5	Recent Progress in Perovskiteâ€Based Reversible Photon–Electricity Conversion Devices. Advanced Functional Materials, 2022, 32, 2108926.	14.9	18
6	Plasmonic Nanohole Arrays with Enhanced Visible Light Photoelectrocatalytic Activity. ACS Photonics, 2022, 9, 652-663.	6.6	11
7	Stable Metal–Halide Perovskite Colloids in Protic Ionic Liquid. CCS Chemistry, 2022, 4, 3264-3274.	7.8	13
8	Interfacial Engineering of PTAA/Perovskites for Improved Crystallinity and Hole Extraction in Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 3284-3292.	8.0	36
9	Surface Passivation Using 2D Perovskites toward Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2022, 34, e2105635.	21.0	221
10	Emissionâ€Colorâ€Tunable Pbâ^'Sn Alloyed Single Crystals with High Luminescent Efficiency and Stability. Advanced Optical Materials, 2022, 10, .	7.3	15
11	Lithium-rich sulfide/selenide cathodes for next-generation lithium-ion batteries: challenges and perspectives. Chemical Communications, 2022, 58, 3591-3600.	4.1	12
12	In Operando Neutron Scattering Multipleâ€Scale Studies of Lithiumâ€Ion Batteries. Small, 2022, 18, e2107491.	10.0	11
13	Synergistic Effect of Halogen Ions and Shelling Temperature on Anion Exchange Induced Interfacial Restructuring for Highly Efficient Blue Emissive InP/ZnS Quantum Dots. Small, 2022, 18, e2108120.	10.0	23
14	Two-Dimensional Heterostructure of MoS ₂ /BA ₂ PbI ₄ 2D Ruddlesden–Popper Perovskite with an S Scheme Alignment for Solar Cells: A First-Principles Study. ACS Applied Electronic Materials, 2022, 4, 1939-1948.	4.3	11
15	Anion induced bottom surface passivation for high performance perovskite solar cell. Chemical Engineering Journal, 2022, 442, 135895.	12.7	5
16	ZIF-67 Derivative Decorated MXene for a Highly Integrated Flexible Self-Powered Photodetector. ACS Applied Materials & Interfaces, 2022, 14, 19725-19735.	8.0	14
17	A visible to near-infrared nanocrystalline organic photodetector with ultrafast photoresponse. Journal of Materials Chemistry C, 2022, 10, 9391-9400.	5.5	8
18	One step synthesis of efficient red emissive carbon dots and their bovine serum albumin composites with enhanced multi-photon fluorescence for in vivo bioimaging. Light: Science and Applications, 2022, 11, 113.	16.6	46

#	Article	IF	CITATIONS
19	Bridging the Interfacial Contact for Improved Stability and Efficiency of Inverted Perovskite Solar Cells. Small, 2022, 18, e2201694.	10.0	16
20	Manipulation of Band Alignment in Two-Dimensional Vertical WSe ₂ /BA ₂ Pbl ₄ Ruddlesden–Popper Perovskite Heterojunctions via Defect Engineering. Journal of Physical Chemistry Letters, 2022, 13, 4579-4588.	4.6	10
21	Nonlinear Infrared Photodetection Based on Strong Nondegenerate Twoâ€Photon Absorption of Perovskite Single Crystal. Advanced Optical Materials, 2022, 10, .	7.3	1
22	Toward Strong Nearâ€Infrared Absorption/Emission from Carbon Dots in Aqueous Media through Solvothermal Fusion of Large Conjugated Perylene Derivatives with Postâ€Surface Engineering. Advanced Science, 2022, 9, .	11.2	48
23	Selfâ€∎ssembly Behavior of Metal Halide Perovskite Nanocrystals. Chinese Journal of Chemistry, 2022, 40, 2239-2248.	4.9	6
24	Broadband white-light emission from a novel two-dimensional metal halide assembled by Pb–Cl hendecahedrons. Journal of Materials Chemistry C, 2022, 10, 9465-9470.	5.5	10
25	Exploring novel ligands with strong electron delocalization for high-performance blue CsPbBr ₃ perovskite nanoplatelets. Journal of Materials Chemistry C, 2022, 10, 9834-9840.	5.5	12
26	Micro―and Nanostructured Lead Halide Perovskites: From Materials to Integrations and Devices. Advanced Materials, 2021, 33, e2000306.	21.0	75
27	Probing the dynamic structural changes of <scp>DNA</scp> using ultrafast laser pulse in grapheneâ€based optofluidic device. InformaÄnÃ-Materiály, 2021, 3, 316-326.	17.3	4
28	Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy, 2021, 6, 38-45.	39.5	342
29	Efficient and Stable Perovskite Solar Cells by Fluorinated Ionic Liquid–Induced Component Interaction. Solar Rrl, 2021, 5, .	5.8	24
30	Deep surface passivation for efficient and hydrophobic perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 2919-2927.	10.3	74
31	Spacer Cation Tuning Enables Vertically Oriented and Graded Quasiâ€2D Perovskites for Efficient Solar Cells. Advanced Functional Materials, 2021, 31, 2008404.	14.9	94
32	Design, synthesis and application in biological imaging of a novel red fluorescent dye based on a rhodanine derivative. RSC Advances, 2021, 11, 160-163.	3.6	7
33	Vapor incubation of FASnI ₃ films for efficient and stable lead-free inverted perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 16943-16951.	10.3	20
34	Surface passivation of organometal halide perovskites by atomic layer deposition: an investigation of the mechanism of efficient inverted planar solar cells. Nanoscale Advances, 2021, 3, 2305-2315.	4.6	25
35	A graphene–Mo ₂ C heterostructure for a highly responsive broadband photodetector. Physical Chemistry Chemical Physics, 2021, 23, 23024-23031.	2.8	1
36	Direct coherent multi-ink printing of fabric supercapacitors. Science Advances, 2021, 7, .	10.3	95

#	Article	lF	CITATIONS
37	Synergistic Interplay between Asymmetric Backbone Conformation, Molecular Aggregation, and Charge-Carrier Dynamics in Fused-Ring Electron Acceptor-Based Bulk Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 2961-2970.	8.0	12
38	Multiâ€Phase Heterostructure of CoNiP/Co <i>_x</i> P for Enhanced Hydrogen Evolution Under Alkaline and Seawater Conditions by Promoting H ₂ O Dissociation. Small, 2021, 17, e2007557.	10.0	83
39	Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science, 2021, 371, 1359-1364.	12.6	508
40	Effect of Zincâ€Doping on the Reduction of the Hotâ€Carrier Cooling Rate in Halide Perovskites. Angewandte Chemie, 2021, 133, 11052-11058.	2.0	2
41	Effect of Zincâ€Doping on the Reduction of the Hotâ€Carrier Cooling Rate in Halide Perovskites. Angewandte Chemie - International Edition, 2021, 60, 10957-10963.	13.8	50
42	Bandgap engineering of layered mono-chalcogenides via pressure. Journal of Applied Physics, 2021, 129, 155703.	2.5	2
43	Phase Tailoring of Ruddlesden–Popper Perovskite at Fixed Large Spacer Cation Ratio. Small, 2021, 17, e2100560.	10.0	10
44	High Optical Gain of Solutionâ€Processed Mixed ation CsPbBr ₃ Thin Films towards Enhanced Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2102210.	14.9	35
45	Enhanced Electrochemical Stability by Alkyldiammonium in Dion–Jacobson Perovskite toward Ultrastable Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100243.	7.3	21
46	Two-Dimensional Bi ₂ Sr ₂ CaCu ₂ O _{8+δ} Nanosheets for Ultrafast Photonics and Optoelectronics. ACS Nano, 2021, 15, 8919-8929.	14.6	20
47	Advances of Nonlinear Photonics in Lowâ€Dimensional Halide Perovskites. Small, 2021, 17, e2100809.	10.0	39
48	All-Inorganic Perovskite Nanorod Arrays with Spatially Randomly Distributed Lasing Modes for All-Photonic Cryptographic Primitives. ACS Applied Materials & Interfaces, 2021, 13, 30891-30901.	8.0	6
49	Doping Electron Transporting Layer: An Effective Method to Enhance <i>J</i> _{SC} of Allâ€norganic Perovskite Solar Cells. Energy and Environmental Materials, 2021, 4, 500-501.	12.8	17
50	Development of Perovskite Oxideâ€Based Electrocatalysts for Oxygen Evolution Reaction. Small, 2021, 17, e2101605.	10.0	71
51	Robust Ultralong Lead Halide Perovskite Microwire Lasers. ACS Applied Materials & Interfaces, 2021, 13, 38458-38466.	8.0	14
52	Promoting Energy Transfer via Manipulation of Crystallization Kinetics of Quasiâ€2D Perovskites for Efficient Green Lightâ€Emitting Diodes. Advanced Materials, 2021, 33, e2102246.	21.0	88
53	Stability, encapsulation and large-area fabrication of organic photovoltaics. Science China Chemistry, 2021, 64, 1441-1459.	8.2	11
54	Antisolvent Engineering to Optimize Grain Crystallinity and Holeâ€Blocking Capability of Perovskite Films for Highâ€Performance Photovoltaics. Advanced Materials, 2021, 33, e2102816.	21.0	61

#	Article	IF	CITATIONS
55	Oxygen Defect Engineering of βâ€MnO ₂ Catalysts via Phase Transformation for Selective Catalytic Reduction of NO. Small, 2021, 17, e2102408.	10.0	38
56	Elucidating the Role of Substrates on Domain Distribution of Quasi-2D Perovskites for Blue Light-Emitting Diodes. ACS Applied Electronic Materials, 2021, 3, 4056-4065.	4.3	3
57	Suppressed Phase Segregation in Highâ€Humidityâ€Processed Dion–Jacobson Perovskite Solar Cells Toward High Efficiency and Stability. Solar Rrl, 2021, 5, 2100555.	5.8	6
58	2D Hybrid Halide Perovskites: Structure, Properties, and Applications in Solar Cells. Small, 2021, 17, e2103514.	10.0	59
59	Limitations and solutions for achieving high-performance perovskite tandem photovoltaics. Nano Energy, 2021, 88, 106219.	16.0	20
60	Metal Halide Perovskite/2D Material Heterostructures: Syntheses and Applications. Small Methods, 2021, 5, e2000937.	8.6	24
61	Electrochemical energy storage devices working in extreme conditions. Energy and Environmental Science, 2021, 14, 3323-3351.	30.8	140
62	Thioacetamide-ligand-mediated synthesis of CsPbBr ₃ –CsPbBr ₃ homostructured nanocrystals with enhanced stability. Journal of Materials Chemistry C, 2021, 9, 11349-11357.	5.5	31
63	Development of Electrocatalysts for Efficient Nitrogen Reduction Reaction under Ambient Condition. Advanced Functional Materials, 2021, 31, 2008983.	14.9	124
64	Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation. Journal of Physical Chemistry Letters, 2021, 12, 604-611.	4.6	34
65	Multiexcitonic Emission in Zero-Dimensional Cs ₂ ZrCl ₆ :Sb ³⁺ Perovskite Crystals. Journal of the American Chemical Society, 2021, 143, 17599-17606.	13.7	131
66	Development of Perovskite Oxideâ€Based Electrocatalysts for Oxygen Evolution Reaction (Small) Tj ETQq0 0 0	rgBT /Over	lock 10 Tf 50
67	Special Issue on the 40th Anniversary of University of Macau. Small, 2021, 17, e2105656.	10.0	0
68	Suppressing the defects in cesium-based perovskites <i>via</i> polymeric interlayer assisted crystallization control. Journal of Materials Chemistry A, 2021, 9, 26149-26158.	10.3	6
69	In Situ Interfacial Passivation of Sn-Based Perovskite Films with a Bi-functional Ionic Salt for Enhanced Photovoltaic Performance. ACS Applied Materials & Interfaces, 2021, , .	8.0	6
70	Crystal face dependent charge carrier extraction in TiO2/perovskite heterojunctions. Nano Energy, 2020, 67, 104227.	16.0	19
71	Constructing Mechanochemical Durable and Self-Healing Superhydrophobic Surfaces. ACS Omega, 2020, 5, 986-994.	3.5	79
72	Emerging polyanionic and organic compounds for high energy density, non-aqueous potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 16061-16080.	10.3	37

#	Article	IF	CITATIONS
73	Water, a Green Solvent for Fabrication of High-Quality CsPbBr ₃ Films for Efficient Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 5925-5931.	8.0	67
74	Plasmonically Enhanced Upconversion Luminescence via Holographically Formed Silver Nanogratings. ACS Applied Materials & Interfaces, 2020, 12, 1292-1298.	8.0	20
75	Ultrasensitive Organicâ€Modulated CsPbBr 3 Quantum Dot Photodetectors via Fast Interfacial Charge Transfer. Advanced Materials Interfaces, 2020, 7, 1901741.	3.7	20
76	Size-Controlled Patterning of Single-Crystalline Perovskite Arrays toward a Tunable High-Performance Microlaser. ACS Applied Materials & Interfaces, 2020, 12, 2662-2670.	8.0	24
77	Design of highly efficient deep-blue organic afterglow through guest sensitization and matrices rigidification. Nature Communications, 2020, 11, 4802.	12.8	148
78	Designing Advanced Vanadiumâ€Based Materials to Achieve Electrochemically Active Multielectron Reactions in Sodium/Potassiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2002244.	19.5	79
79	Surface Reconstruction and Phase Transition on Vanadium–Cobalt–Iron Trimetal Nitrides to Form Active Oxyhydroxide for Enhanced Electrocatalytic Water Oxidation. Advanced Energy Materials, 2020, 10, 2002464.	19.5	155
80	Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nature Energy, 2020, 5, 587-595.	39.5	338
81	Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells. Nature Communications, 2020, 11, 3361.	12.8	57
82	Oxygen Evolution Reaction: Surface Reconstruction and Phase Transition on Vanadium–Cobalt–Iron Trimetal Nitrides to Form Active Oxyhydroxide for Enhanced Electrocatalytic Water Oxidation (Adv.) Tj ETQq0 0	0 rgg∰.Ђ/O∖	verkock 10 Tf
83	Role of the Exciton–Polariton in a Continuous-Wave Optically Pumped CsPbBr ₃ Perovskite Laser. Nano Letters, 2020, 20, 6636-6643.	9.1	145
84	Suppressing Strong Exciton–Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems. Angewandte Chemie, 2020, 132, 22340-22346.	2.0	2
85	[(C 8 H 17) 4 N] 4 [SiW 12 O 40] (TASiWâ€12)â€Modified SnO 2 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000406.	5.8	10
86	Suppressing Strong Exciton–Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems. Angewandte Chemie - International Edition, 2020, 59, 22156-22162.	13.8	24
87	Rearranging Low-Dimensional Phase Distribution of Quasi-2D Perovskites for Efficient Sky-Blue Perovskite Light-Emitting Diodes. ACS Nano, 2020, 14, 11420-11430.	14.6	206
88	Ultrafast carrier relaxation dynamics of photoexcited GaAs and GaAs/AlGaAs nanowire array. Physical Chemistry Chemical Physics, 2020, 22, 25819-25826.	2.8	6
89	Stable Whispering Gallery Mode Lasing from Solutionâ€Processed Formamidinium Lead Bromide Perovskite Microdisks. Advanced Optical Materials, 2020, 8, 2000030.	7.3	32
90	Facile deposition of high-quality Cs2AgBiBr6 films for efficient double perovskite solar cells. Science China Materials, 2020, 63, 1518-1525.	6.3	41

#	Article	IF	CITATIONS
91	Effective Surface Ligand-Concentration Tuning of Deep-Blue Luminescent FAPbBr ₃ Nanoplatelets with Enhanced Stability and Charge Transport. ACS Applied Materials & Interfaces, 2020, 12, 31863-31874.	8.0	37
92	Building High Power Density of Sodium-Ion Batteries: Importance of Multidimensional Diffusion Pathways in Cathode Materials. Frontiers in Chemistry, 2020, 8, 152.	3.6	26
93	Photoluminescence Emission during Photoreduction of Graphene Oxide Sheets as Investigated with Single-Molecule Microscopy. Journal of Physical Chemistry C, 2020, 124, 7914-7921.	3.1	15
94	In Situ Growth of MAPbBr ₃ Nanocrystals on Few‣ayer MXene Nanosheets with Efficient Energy Transfer. Small, 2020, 16, e1905896.	10.0	38
95	Tailoring the Surface Morphology and Phase Distribution for Efficient Perovskite Electroluminescence. Journal of Physical Chemistry Letters, 2020, 11, 5877-5882.	4.6	17
96	Printable Ink Design towards Customizable Miniaturized Energy Storage Devices. , 2020, 2, 1041-1056.		45
97	Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3â^'xP nanocrystals. Frontiers of Optoelectronics, 2020, 13, 139-148.	3.7	13
98	Lowâ€Dimensional Dion–Jacobsonâ€Phase Leadâ€Free Perovskites for Highâ€Performance Photovoltaics with Improved Stability. Angewandte Chemie - International Edition, 2020, 59, 6909-6914.	13.8	123
99	Lowâ€Dimensional Dion–Jacobsonâ€Phase Leadâ€Free Perovskites for Highâ€Performance Photovoltaics with Improved Stability. Angewandte Chemie, 2020, 132, 6976-6981.	2.0	26
100	Oxygen Evolution Reaction Kinetics: Reducing Oxygen Evolution Reaction Overpotential in Cobaltâ€Based Electrocatalysts via Optimizing the "Microparticlesâ€inâ€Spider Web―Electrode Configurations (Small 8/2020). Small, 2020, 16, 2070041.	10.0	1
101	Controlling the film structure by regulating 2D Ruddlesden–Popper perovskite formation enthalpy for efficient and stable tri-cation perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5874-5881.	10.3	23
102	Reducing Oxygen Evolution Reaction Overpotential in Cobaltâ€Based Electrocatalysts via Optimizing the "Microparticlesâ€in‧pider Web―Electrode Configurations. Small, 2020, 16, e1907029.	10.0	34
103	All Green Solvents for Fabrication of CsPbBr ₃ Films for Efficient Solar Cells Guided by the Hansen Solubility Theory. Solar Rrl, 2020, 4, 2000008.	5.8	33
104	Light-induced phase transition and photochromism in all-inorganic two-dimensional Cs2PbI2Cl2 perovskite. Science China Materials, 2020, 63, 1510-1517.	6.3	14
105	Morphology Control of Doped Spiroâ€MeOTAD Films for Air Stable Perovskite Solar Cells. Small, 2020, 16, e1907513.	10.0	16
106	Towards Simplifying the Device Structure of Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000863.	14.9	67
107	Origin of High Efficiency and Long-Term Stability in Ionic Liquid Perovskite Photovoltaic. Research, 2020, 2016345.	5.7	59
108	Near-Infrared-Excitable Organic Ultralong Phosphorescence through Multiphoton Absorption. Research, 2020, 2020, 2904928.	5.7	10

#	Article	IF	CITATIONS
109	Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets. Science China Materials, 2019, 62, 43-53.	6.3	20
110	Lasing from Mechanically Exfoliated 2D Homologous Ruddlesden–Popper Perovskite Engineered by Inorganic Layer Thickness. Advanced Materials, 2019, 31, e1903030.	21.0	128
111	Vapor-Phase Incommensurate Heteroepitaxy of Oriented Single-Crystal CsPbBr ₃ on GaN: Toward Integrated Optoelectronic Applications. ACS Nano, 2019, 13, 10085-10094.	14.6	59
112	Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets via plasmonic nonlinear fano resonance. Communications Physics, 2019, 2, .	5.3	36
113	Lowâ€Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for Highâ€Performance Photovoltaics. Advanced Materials, 2019, 31, e1901966.	21.0	96
114	Solutionâ€Processed Perovskite Microdisk for Coherent Light Emission. Advanced Optical Materials, 2019, 7, 1900678.	7.3	12
115	Thermally Activated Upconversion Nearâ€Infrared Photoluminescence from Carbon Dots Synthesized via Microwave Assisted Exfoliation. Small, 2019, 15, e1905050.	10.0	70
116	Effects of Material Dimensionality on the Optical Properties of CsPbBr ₃ Nanomaterials. Journal of Physical Chemistry C, 2019, 123, 28893-28897.	3.1	8
117	Perovskite Solar Cells: Lowâ€Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for Highâ€Performance Photovoltaics (Adv. Mater. 35/2019). Advanced Materials, 2019, 31, 1970252.	21.0	6
118	Mediumâ€Bandgap Conjugated Polymer Donors for Organic Photovoltaics. Macromolecular Rapid Communications, 2019, 40, e1900074.	3.9	30
119	Realization of the Photostable Intrinsic Core Emission from Carbon Dots through Surface Deoxidation by Ultraviolet Irradiation. Journal of Physical Chemistry Letters, 2019, 10, 3094-3100.	4.6	50
120	Pure Bromideâ€Based Perovskite Nanoplatelets for Blue Lightâ€Emitting Diodes. Small Methods, 2019, 3, 1900196.	8.6	34
121	Recent Progress in Metal Halide Perovskite Micro―and Nanolasers. Advanced Optical Materials, 2019, 7, 1900080.	7.3	95
122	Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nature Communications, 2019, 10, 1112.	12.8	185
123	Stable, Efficient Near-Infrared Light-Emitting Diodes Enabled by α/δ Phase Modulation. Journal of Physical Chemistry Letters, 2019, 10, 2101-2107.	4.6	14
124	Room-Temperature Molten Salt for Facile Fabrication of Efficient and Stable Perovskite Solar Cells in Ambient Air. CheM, 2019, 5, 995-1006.	11.7	245
125	Hollow TiO ₂ submicrospheres assembled by tiny nanocrystals as superior anode for lithium ion battery. Journal of Materials Chemistry A, 2019, 7, 23733-23738.	10.3	15
126	Cyano-Substituted Head-to-Head Polythiophenes: Enabling High-Performance n-Type Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 10089-10098.	8.0	29

#	Article	IF	CITATIONS
127	Understanding the Impact of Cu-In-Ga-S Nanoparticles Compactness on Holes Transfer of Perovskite Solar Cells. Nanomaterials, 2019, 9, 286.	4.1	9
128	Charge Carrier Dynamics and Broad Wavelength Tunable Amplified Spontaneous Emission in Zn <i>_{<i>x</i>}</i> Cd _{1–<i>x</i>} Se Nanowires. Journal of Physical Chemistry Letters, 2019, 10, 7516-7522.	4.6	5
129	Photoluminescence: Thermally Activated Upconversion Nearâ€Infrared Photoluminescence from Carbon Dots Synthesized via Microwave Assisted Exfoliation (Small 50/2019). Small, 2019, 15, 1970288.	10.0	2
130	Allâ€Inorganic Perovskite Nanocrystalsâ€Based Light Emitting Diodes and Solar Cells. ChemNanoMat, 2019, 5, 266-277.	2.8	18
131	Trapâ€Fillingâ€Induced Charge Carrier Dynamics in Organic Solar Cells. Advanced Optical Materials, 2018, 6, 1800027.	7.3	10
132	One‧tep Inkjet Printed Perovskite in Air for Efficient Light Harvesting. Solar Rrl, 2018, 2, 1700217.	5.8	90
133	Enhanced power conversion efficiency in iridium complex-based terpolymers for polymer solar cells. Npj Flexible Electronics, 2018, 2, .	10.7	84
134	Enhanced Exciton and Photon Confinement in Ruddlesden–Popper Perovskite Microplatelets for Highly Stable Lowâ€Threshold Polarized Lasing. Advanced Materials, 2018, 30, e1707235.	21.0	101
135	Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes. Nano Letters, 2018, 18, 3157-3164.	9.1	199
136	Ruddlesden–Popper Perovskite for Stable Solar Cells. Energy and Environmental Materials, 2018, 1, 221-231.	12.8	85
137	Phase Pure 2D Perovskite for Highâ€Performance 2D–3D Heterostructured Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805323.	21.0	244
138	Purely Organic Phosphorescence: Resonance-Activated Spin-Flipping for Efficient Organic Ultralong Room-Temperature Phosphorescence (Adv. Mater. 44/2018). Advanced Materials, 2018, 30, 1870335.	21.0	1
139	Resonanceâ€Activated Spinâ€Flipping for Efficient Organic Ultralong Roomâ€Temperature Phosphorescence. Advanced Materials, 2018, 30, e1803856.	21.0	161
140	Metal halide perovskites: stability and sensing-ability. Journal of Materials Chemistry C, 2018, 6, 10121-10137.	5.5	131
141	Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angewandte Chemie - International Edition, 2018, 57, 8425-8431.	13.8	241
142	Efficient recycling of trapped energies for dual-emission in Mn-doped perovskite nanocrystals. Nano Energy, 2018, 51, 704-710.	16.0	54
143	Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angewandte Chemie, 2018, 130, 8561-8567.	2.0	47
144	Low Threshold Fabry–Pérot Mode Lasing from Lead Iodide Trapezoidal Nanoplatelets. Small, 2018, 14, e1801938.	10.0	17

#	Article	IF	CITATIONS
145	Spin control in reduced-dimensional chiral perovskites. Nature Photonics, 2018, 12, 528-533.	31.4	371
146	Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature Communications, 2017, 8, 14558.	12.8	473
147	Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals. Nature Communications, 2017, 8, 15198.	12.8	177
148	Long Minorityâ€Carrier Diffusion Length and Low Surfaceâ€Recombination Velocity in Inorganic Leadâ€Free CsSnI ₃ Perovskite Crystal for Solar Cells. Advanced Functional Materials, 2017, 27, 1604818.	14.9	164
149	Hot electron–hole plasma dynamics and amplified spontaneous emission in ZnTe nanowires. Nanoscale, 2017, 9, 15612-15621.	5.6	12
150	Modulating Excitonic Recombination Effects through Oneâ€6tep Synthesis of Perovskite Nanoparticles for Lightâ€Emitting Diodes. ChemSusChem, 2017, 10, 3818-3824.	6.8	12
151	2,1,3-Benzothiadiazole-5,6-dicarboxylicimide-Based Polymer Semiconductors for Organic Thin-Film Transistors and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 42167-42178.	8.0	25
152	Twoâ€Photon Optical Properties in Individual Organic–Inorganic Perovskite Microplates. Advanced Optical Materials, 2017, 5, 1700809.	7.3	33
153	Cyclometalated Pt complex-based random terpolymers for efficient polymer solar cells. Polymer Chemistry, 2017, 8, 4729-4737.	3.9	21
154	Phononâ€Assisted Antiâ€Stokes Lasing in ZnTe Nanoribbons. Advanced Materials, 2016, 28, 276-283.	21.0	41
155	Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers. Journal of the American Chemical Society, 2016, 138, 3761-3768.	13.7	496
156	Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10, 699-704.	31.4	1,535
157	Lasing from halide perovskites. , 2016, , .		Ο
158	Direct silicon–nitrogen bonded host materials with enhanced σ–π conjugation for blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 10047-10052.	5.5	18
159	Solutionâ€Processed Tinâ€Based Perovskite for Nearâ€Infrared Lasing. Advanced Materials, 2016, 28, 8191-8196.	21.0	222
160	A large area (70 cm ²) monolithic perovskite solar module with a high efficiency and stability. Energy and Environmental Science, 2016, 9, 3687-3692.	30.8	213
161	Origin of Photocarrier Losses in Iron Pyrite (FeS ₂) Nanocubes. ACS Nano, 2016, 10, 4431-4440.	14.6	56
162	Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations. Accounts of Chemical Research, 2016, 49, 294-302.	15.6	159

#	Article	IF	CITATIONS
163	Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. Nanoscale, 2016, 8, 6352-6360.	5.6	88
164	Charge Accumulation and Hysteresis in Perovskiteâ€Based Solar Cells: An Electroâ€Optical Analysis. Advanced Energy Materials, 2015, 5, 1500829.	19.5	217
165	Interfacial Electron Transfer Barrier at Compact TiO ₂ /CH ₃ NH ₃ PbI ₃ Heterojunction. Small, 2015, 11, 3606-3613.	10.0	196
166	SnS44–, SbS43–, and AsS33– Metal Chalcogenide Surface Ligands: Couplings to Quantum Dots, Electron Transfers, and All-Inorganic Multilayered Quantum Dot Sensitized Solar Cells. Journal of the American Chemical Society, 2015, 137, 13827-13835.	13.7	32
167	Direct measurement of coherent phonon dynamics in solution-processed stibnite thin films. Physical Review B, 2014, 90, .	3.2	13
168	Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 2014, 13, 476-480.	27.5	2,725
169	The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy and Environmental Science, 2014, 7, 399-407.	30.8	965
170	Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH ₃ NH ₃ Pbl ₃ . Science, 2013, 342, 344-347.	12.6	6,060
171	Ultrafast Exciton Dynamics and Twoâ€Photon Pumped Lasing from ZnSe Nanowires. Advanced Optical Materials, 2013, 1, 319-326.	7.3	22
172	Exciton Dynamics: Ultrafast Exciton Dynamics and Twoâ€Photon Pumped Lasing from ZnSe Nanowires (Advanced Optical Materials 4/2013). Advanced Optical Materials, 2013, 1, 276-276.	7.3	1
173	Origin of green emission and charge trapping dynamics in ZnO nanowires. Physical Review B, 2013, 87, .	3.2	68
174	Hollow Nanostructures: Efficient Ag@AgCl Cubic Cage Photocatalysts Profit from Ultrafast Plasmon-Induced Electron Transfer Processes (Adv. Funct. Mater. 23/2013). Advanced Functional Materials, 2013, 23, 2902-2902.	14.9	1
175	Efficient Ag@AgCl Cubic Cage Photocatalysts Profit from Ultrafast Plasmonâ€Induced Electron Transfer Processes. Advanced Functional Materials, 2013, 23, 2932-2940.	14.9	270
176	Size and surface effects on transient photoconductivity in CdS nanobelts probed by time-resolved terahertz spectroscopy. Applied Physics Letters, 2012, 101, 091104.	3.3	13
177	Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures. ACS Nano, 2012, 6, 10835-10844.	14.6	124
178	Resonant Aluminum Nanodisk Array for Enhanced Tunable Broadband Light Trapping in Ultrathin Bulk Heterojunction Organic Photovoltaic Devices. Plasmonics, 2012, 7, 677-684.	3.4	22
179	Three-Photon Absorption in Seeded CdSe/CdS Nanorod Heterostructures. Journal of Physical Chemistry C, 2011, 115, 17711-17716.	3.1	43
180	Charge transfer dynamics in Cu-doped ZnO nanowires. Applied Physics Letters, 2011, 98, .	3.3	55

#	Article	IF	CITATIONS
181	Carrier and exciton spin dynamics in Cu-doped ZnO nanowires. , 2011, , .		0
182	Tunable multi-photon absorption cross-sections using seeded CdSe/CdS nanorod heterostructures. , 2011, , .		0
183	Enhanced tunability of the multiphoton absorption cross-section in seeded CdSe/CdS nanorod heterostructures. Applied Physics Letters, 2010, 97, .	3.3	35
184	The Physics of ultrafast saturable absorption in graphene. Optics Express, 2010, 18, 4564.	3.4	304
185	Stimulated emission of CdS nanowires grown by thermal evaporation. Applied Physics Letters, 2007, 91,	3.3	26
186	Improved CsPbBr 3 visible light photodetectors via decoration of sputtered au nanoparticles with synergistic benefits. Nano Select, 0, , .	3.7	8
187	Light Emission from Metal-Halide Perovskites. , 0, , .		0
188	Light Emission from Metal-Halide Perovskites. , 0, , .		0