
Kaushik P Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4549997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Nitric Oxide in Central Sympathetic Outflow. Experimental Biology and Medicine, 2001, 226, 814-824.	2.4	196
2	Effect of nitric oxide within the paraventricular nucleus on renal sympathetic nerve discharge: role of GABA. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R728-R734.	1.8	156
3	Chronic Exercise Reduces Sympathetic Nerve Activity in Rabbits With Pacing-Induced Heart Failure. Circulation, 2000, 102, 1854-1862.	1.6	156
4	Neural regulation of sympathetic nerve activity in heart failure. Progress in Cardiovascular Diseases, 1995, 37, 397-414.	3.1	148
5	Dendritic Peptide Release Mediates Interpopulation Crosstalk between Neurosecretory and Preautonomic Networks. Neuron, 2013, 78, 1036-1049.	8.1	145
6	Nitric Oxide Synthesis and Oxidative Stress in the Renal Cortex of Rats with Diabetes Mellitus. Journal of the American Society of Nephrology: JASN, 2001, 12, 1630-1639.	6.1	133
7	Interaction between glutamate and GABA systems in the integration of sympathetic outflow by the paraventricular nucleus of the hypothalamus. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2847-H2856.	3.2	128
8	Role of paraventricular nucleus in mediating sympathetic outflow in heart failure. , 2000, 5, 73-86.		121
9	Reduced endogenous GABA-mediated inhibition in the PVN on renal nerve discharge in rats with heart failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R1006-R1015.	1.8	121
10	Alteration of NMDA NR 1 Receptors Within the Paraventricular Nucleus of Hypothalamus in Rats With Heart Failure. Circulation Research, 2003, 93, 990-997.	4.5	114
11	Angiotensin-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R1035-R1043.	1.8	111
12	Exercise training improves endogenous nitric oxide mechanisms within the paraventricular nucleus in rats with heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2332-H2341.	3.2	100
13	Neurohumoral Stimulation. Heart Failure Clinics, 2012, 8, 87-99.	2.1	95
14	Parvocellular neurons of the paraventricular nucleus are involved in the reduction in renal nerve discharge during isotonic volume expansion. Journal of the Autonomic Nervous System, 1994, 50, 1-11.	1.9	93
15	Blunted nitric oxide-mediated inhibition of renal nerve discharge within PVN of rats with heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H995-H1004.	3.2	93
16	Altered number of diaphorase (NOS) positive neurons in the hypothalamus of rats with heart failure. Brain Research, 1998, 786, 219-225.	2.2	86
17	NMDA-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2328-H2336.	3.2	83
18	Differential role of the paraventricular nucleus of the hypothalamus in modulating the sympathoexcitatory component of peripheral and central chemoreflexes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R789-R797.	1.8	80

#	Article	IF	CITATIONS
19	Astrocytes Contribute to Angiotensin II Stimulation of Hypothalamic Neuronal Activity and Sympathetic Outflow. Hypertension, 2016, 68, 1483-1493.	2.7	79
20	Augmented Input From Cardiac Sympathetic Afferents Inhibits Baroreflex in Rats With Heart Failure. Hypertension, 2005, 45, 1173-1181.	2.7	77
21	The Regulation of Sympathetic Outflow in Heart Failure. Annals of the New York Academy of Sciences, 2001, 940, 431-443.	3.8	76
22	Exercise training normalizes enhanced glutamate-mediated sympathetic activation from the PVN in heart failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1863-R1872.	1.8	75
23	Regulation of tonic GABA inhibitory function, presympathetic neuronal activity and sympathetic outflow from the paraventricular nucleus by astroglial GABA transporters. Journal of Physiology, 2009, 587, 4645-4660.	2.9	61
24	Enhanced angiotensin-mediated excitation of renal sympathetic nerve activity within the paraventricular nucleus of anesthetized rats with heart failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1364-R1374.	1.8	60
25	Regulation of hypothalamic renin-angiotensin system and oxidative stress by aldosterone. Experimental Physiology, 2011, 96, 1028-1038.	2.0	52
26	nNOS gene transfer to RVLM improves baroreflex function in rats with chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1660-H1667.	3.2	50
27	Central neural control of sympathetic nerve activity in heart failure following exercise training. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H527-H537.	3.2	50
28	Enhanced activation of RVLM-projecting PVN neurons in rats with chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1700-H1711.	3.2	50
29	Neuronal expression of Fos protein in the hypothalamus of rats with heart failure. Brain Research, 2000, 865, 27-34.	2.2	47
30	Effect of in vivo gene transfer of nNOS in the PVN on renal nerve discharge in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H594-H601.	3.2	47
31	Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase. Diabetes, 2016, 65, 3075-3090.	0.6	47
32	NEUROHUMORAL ACTIVATION IN HEART FAILURE: ROLE OF PARAVENTRICULAR NUCLEUS. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 722-726.	1.9	45
33	Gene Transfer of Neuronal Nitric Oxide Synthase to the Paraventricular Nucleus Reduces the Enhanced Glutamatergic Tone in Rats With Chronic Heart Failure. Hypertension, 2011, 58, 966-973.	2.7	45
34	Hemodynamic and norepinephrine responses to pacing-induced heart failure in conscious sinoaortic-denervated dogs. Journal of Applied Physiology, 1996, 81, 1855-1855.	2.5	44
35	Decreased nNOS in the PVN leads to increased sympathoexcitation in chronic heart failure: role for CAPON and Ang II. Cardiovascular Research, 2011, 92, 348-357.	3.8	44
36	Paraventricular nucleus bicuculline alters frequency components of sympathetic nerve discharge bursts. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1233-H1241.	3.2	43

#	Article	IF	CITATIONS
37	Daily exercise normalizes the number of diaphorase (NOS) positive neurons in the hypothalamus of hypertensive rats. Brain Research, 2002, 955, 153-160.	2.2	43
38	Exercise Training Prevents Arterial Baroreflex Dysfunction in Rats Treated With Central Angiotensin II. Hypertension, 2007, 49, 519-527.	2.7	43
39	Chronic AT ₁ receptor blockade normalizes NMDA-mediated changes in renal sympathetic nerve activity and NR ₁ expression within the PVN in rats with heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1546-H1555.	3.2	42
40	Exercise training normalizes enhanced sympathetic activation from the paraventricular nucleus in chronic heart failure: role of angiotensin II. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R387-R394.	1.8	42
41	Angiotensin Peptides and Nitric Oxide in Cardiovascular Disease. Antioxidants and Redox Signaling, 2013, 19, 1121-1132.	5.4	42
42	Activation of afferent renal nerves modulates RVLM-projecting PVN neurons. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1103-H1111.	3.2	42
43	Effects of nNOS antisense in the paraventricular nucleus on blood pressure and heart rate in rats with heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H205-H213.	3.2	40
44	Modulation of angiotensin II signaling following exercise training in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H781-H791.	3.2	38
45	Norepinephrine turnover in peripheral tissues of rats with heart failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R556-R562.	1.8	37
46	Angiotensin-converting enzyme 2 overexpression improves central nitric oxide-mediated sympathetic outflow in chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2402-H2412.	3.2	36
47	Blunted nitric oxide-mediated inhibition of sympathetic nerve activity within the paraventricular nucleus in diabetic rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R992-R1002.	1.8	35
48	Exercise training improves renal excretory responses to acute volume expansion in rats with heart failure. American Journal of Physiology - Renal Physiology, 2006, 291, F1148-F1156.	2.7	35
49	Renal Denervation Improves Exaggerated Sympathoexcitation in Rats With Heart Failure. Hypertension, 2016, 68, 175-184.	2.7	35
50	Integration of renal sensory afferents at the level of the paraventricular nucleus dictating sympathetic outflow. Autonomic Neuroscience: Basic and Clinical, 2017, 204, 57-64.	2.8	35
51	MMP9 inhibition increases autophagic flux in chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1414-H1437.	3.2	35
52	Impairment of Neuronal Nitric Oxide Synthase-Dependent Dilation of Cerebral Arterioles During Chronic Alcohol Consumption. Alcoholism: Clinical and Experimental Research, 2002, 26, 663-670.	2.4	33
53	Urinary Proteolytic Activation of Renal Epithelial Na ⁺ Channels in Chronic Heart Failure. Hypertension, 2016, 67, 197-205.	2.7	32
54	Enhanced angiotensin II-mediated central sympathoexcitation in streptozotocin-induced diabetes: role of superoxide anion. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R311-R320.	1.8	30

#	Article	IF	CITATIONS
55	Angiotensin II-mediated posttranslational modification of nNOS in the PVN of rats with CHF: role for PIN. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H843-H855.	3.2	30
56	Enhanced Expression and Function of Renal SGLT2 (Sodium-Glucose Cotransporter 2) in Heart Failure: Role of Renal Nerves. Circulation: Heart Failure, 2021, 14, CIRCHEARTFAILURE121008365.	3.9	30
57	Altered Control of Ventilation in Streptozotocin-Induced Diabetic Rats. Experimental Biology and Medicine, 1994, 207, 213-219.	2.4	29
58	Nitric oxide inhibits the expression of AT ₁ receptors in neurons. American Journal of Physiology - Cell Physiology, 2012, 302, C1162-C1173.	4.6	28
59	Role of Chemoreceptor Activation in Hemodynamic Responses to Electrical Stimulation of the Carotid Sinus in Conscious Rats. Hypertension, 2015, 66, 598-603.	2.7	28
60	Hypoxia-Inducible Factor-1α Mediates Increased Sympathoexcitation via Glutamatergic N-Methyl- <scp>d</scp> -Aspartate Receptors in the Paraventricular Nucleus of Rats With Chronic Heart Failure. Circulation: Heart Failure, 2016, 9, .	3.9	28
61	Post-translational regulation of neuronal nitric oxide synthase: implications for sympathoexcitatory states. Expert Opinion on Therapeutic Targets, 2017, 21, 11-22.	3.4	28
62	Specific Afferent Renal Denervation Prevents Reduction in Neuronal Nitric Oxide Synthase Within the Paraventricular Nucleus in Rats With Chronic Heart Failure. Hypertension, 2018, 72, 667-675.	2.7	27
63	Role of the paraventricular nucleus in renal excretory responses to acute volume expansion: role of nitric oxide. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1738-H1746.	3.2	26
64	Renal denervation improves sodium excretion in rats with chronic heart failure: effects on expression of renal ENaC and AQP2. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H958-H968.	3.2	26
65	Central Glucagon-like Peptide-1 Receptor Signaling via Brainstem Catecholamine Neurons Counteracts Hypertension in Spontaneously Hypertensive Rats. Scientific Reports, 2019, 9, 12986.	3.3	25
66	Altered nitric oxide mechanism within the paraventricular nucleus contributes to the augmented carotid body chemoreflex in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H149-H157.	3.2	24
67	Increased renal ENaC subunits and sodium retention in rats with chronic heart failure. American Journal of Physiology - Renal Physiology, 2011, 300, F641-F649.	2.7	24
68	Renal denervation improves cardiac function in rats with chronic heart failure: Effects on expression of β-adrenoceptors. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H337-H346.	3.2	23
69	Renal denervation based on experimental rationale. Hypertension Research, 2021, 44, 1385-1394.	2.7	23
70	Phosphorylation of Cx43 residue Y313 by Src contributes to blocking the interaction with Drebrin and disassembling gap junctions. Journal of Molecular and Cellular Cardiology, 2019, 126, 36-49.	1.9	22
71	Alterations in brain hexokinase activity associated with streptozoticin-induced diabetes mellitus in the rat. Brain Research, 1990, 522, 157-160.	2.2	20
72	Central Ang II (Angiotensin II)-Mediated Sympathoexcitation. Hypertension, 2021, 77, 147-157.	2.7	19

#	Article	IF	CITATIONS
73	Cardiorenal Syndrome: The Role of Neural Connections Between the Heart and the Kidneys. Circulation Research, 2022, 130, 1601-1617.	4.5	19
74	Neuronal expression of fos protein in the forebrain of diabetic rats. Brain Research, 2002, 956, 268-275.	2.2	18
75	Exercise training normalizes the blunted central component of the baroreflex in rats with heart failure: role of the PVN. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H173-H181.	3.2	18
76	Relative contributions of the thalamus and the paraventricular nucleus of the hypothalamus to the cardiac sympathetic afferent reflex. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R50-R59.	1.8	18
77	GABA-containing liposomes: neuroscience applications and translational perspectives for targeting neurological diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 781-788.	3.3	18
78	GLP-1 mediated diuresis and natriuresis are blunted in heart failure and restored by selective afferent renal denervation. Cardiovascular Diabetology, 2020, 19, 57.	6.8	18
79	Contribution of the paraventricular nucleus in autonomic adjustments to heat stress. Experimental Biology and Medicine, 2012, 237, 570-577.	2.4	17
80	Effect of heart failure on catecholamine granule morphology and storage in chromaffin cells. Journal of Endocrinology, 2016, 230, 309-323.	2.6	17
81	A novel role for miR-133a in centrally mediated activation of the renin-angiotensin system in congestive heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H968-H979.	3.2	17
82	Increased nitric oxide synthase activity and expression in the hypothalamus of hindlimb unloaded rats. Brain Research, 2006, 1115, 65-74.	2.2	16
83	Renal interstitial hydrostatic pressure and sodium excretion during acute volume expansion in diabetic rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R239-R245.	1.8	15
84	A Hypothalamic Leptin-Glutamate Interaction in the Regulation of Sympathetic Nerve Activity. Neural Plasticity, 2017, 2017, 1-11.	2.2	15
85	Renal responses to acute volume expansion and atrial natriuretic factor in streptozotocin-induced diabetic rats. Diabetes Research and Clinical Practice, 1991, 14, 37-46.	2.8	14
86	Does glucagon-like peptide-1 induce diuresis and natriuresis by modulating afferent renal nerve activity?. American Journal of Physiology - Renal Physiology, 2019, 317, F1010-F1021.	2.7	14
87	Inhibition of K+ Currents by Homocysteine in Rat Ventricular Myocytes. Journal of Cardiovascular Electrophysiology, 2001, 12, 175-182.	1.7	13
88	Liposome-entrapped GABA modulates the expression of nNOS in NG108-15 cells. Journal of Neuroscience Methods, 2016, 273, 55-63.	2.5	13
89	Inhibition of Pyk2 and Src activity improves Cx43 gap junction intercellular communication. Journal of Molecular and Cellular Cardiology, 2020, 149, 27-40.	1.9	13
90	Exercise Training Attenuates Upregulation of p47 ^{phox} and p67 ^{phox} in Hearts of Diabetic Rats. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	4.0	11

#	Article	IF	CITATIONS
91	Centrally Mediated Erectile Dysfunction in Rats with Type 1 Diabetes: Role of Angiotensin II and Superoxide. Journal of Sexual Medicine, 2013, 10, 2165-2176.	0.6	10
92	Central angiotensin II-Protein inhibitor of neuronal nitric oxide synthase (PIN) axis contribute to neurogenic hypertension. Nitric Oxide - Biology and Chemistry, 2020, 94, 54-62.	2.7	10
93	Renal Nerves Are Involved in the Natriuresis and Diuresis Produced by Central Administration of Clonidine in the Rat. Experimental Biology and Medicine, 1993, 202, 81-87.	2.4	9
94	Regional variations in NMDA receptor downregulation in streptozotocin-diabetic rat brain. Brain Research, 2006, 1115, 217-222.	2.2	9
95	Exercise training augments neuronal nitric oxide synthase dimerization in the paraventricular nucleus of rats with chronic heart failure. Nitric Oxide - Biology and Chemistry, 2019, 87, 73-82.	2.7	9
96	Central alpha-2 adrenergic mechanisms in the renal nerve mediated natriuresis and diuresis produced by acute volume expansion. Journal of the Autonomic Nervous System, 1991, 36, 47-54.	1.9	8
97	Renal Responses to Acute Volume Expansion in Young Spontaneously Hypertensive Rats. Clinical and Experimental Hypertension, 1993, 15, 91-104.	1.3	8
98	Nitric oxide synthase, ADMA, SDMA, and nitric oxide activity in the paraventricular nucleus throughout the etiology of renal wrap hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H2276-H2284.	3.2	8
99	Angiotensin-converting enzyme 2 activator, DIZE in the basolateral amygdala attenuates the tachycardic response to acute stress by modulating glutamatergic tone. Neuropeptides, 2020, 83, 102076.	2.2	8
100	Glutamatergic receptor dysfunction in spinal cord contributes to the exaggerated exercise pressor reflex in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H447-H455.	3.2	7
101	Electrical stimulation of the aortic depressor nerve in conscious rats overcomes the attenuation of the baroreflex in chronic heart failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R612-R618.	1.8	7
102	Neurogenic Hypertension Mediated Mitochondrial Abnormality Leads to Cardiomyopathy: Contribution of UPRmt and Norepinephrine-miR- 18a-5p-HIF-11± Axis. Frontiers in Physiology, 2021, 12, 718982.	2.8	7
103	A Critical Role for the Paraventricular Nucleus of the Hypothalamus in the Regulation of the Volume Reflex in Normal and Various Cardiovascular Disease States. Current Hypertension Reports, 2022, 24, 235-246.	3.5	7
104	Splenic Denervation Attenuates Repeated Social Defeat Stress-Induced T Lymphocyte Inflammation. Biological Psychiatry Global Open Science, 2021, 1, 190-200.	2.2	6
105	Nanoformulation of the superoxide dismutase mimic, MnTnBuOE-2-PyP5+, prevents its acute hypotensive response. Redox Biology, 2020, 36, 101610.	9.0	5
106	Role of Renal Sympathetic Nerves in GLPâ€1 (Glucagonâ€Like Peptideâ€1) Receptor Agonist Exendinâ€4â€Media Diuresis and Natriuresis in Dietâ€Induced Obese Rats. Journal of the American Heart Association, 2021, 10, e022542.	ted 3.7	5
107	Why publish in the <i>American Journal of Physiology-Heart and Circulatory Physiology</i> ?. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H221-H223.	3.2	4
108	Diuretic and Natriuretic Responses to Anf in the Presence and Absence of Renal Nerves in Doca-Salt Hypertensive Rats. Clinical and Experimental Hypertension, 1993, 15, 257-270.	1.3	3

#	Article	IF	CITATIONS
109	Sympathoinhibition and vasodilation contribute to the acute hypotensive response of the superoxide dismutase mimic, MnTnBuOE-2-PyP5+, in hypertensive animals. Advances in Redox Research, 2021, 3, 100016.	2.1	3
110	Abstract 15288: Mitochondrial Injury in Cardiomyopathy of Neurogenic Hypertension: Role of MiR-18a-5p/HIF-1a Axis. Circulation, 2020, 142, .	1.6	3
111	A comparison of acute mouse hindlimb injuries between tourniquet- and femoral artery ligation-induced ischemia-reperfusion. Injury, 2021, 52, 3217-3226.	1.7	2
112	Therapeutic effects of masitinib on abnormal mechanoreception in a mouse model of tourniquet-induced extremity ischemia-reperfusion. European Journal of Pharmacology, 2021, 911, 174549.	3.5	2
113	Gene transfer of neuronal nitric oxide synthase to the paraventricular nucleus improves enhanced NMDA NR1 receptor function in rats with chronic heart failure. FASEB Journal, 2007, 21, A1267.	0.5	2
114	Decreased Mitochondrial Unfolded Protein Response (UPRmt) in HFpEF. FASEB Journal, 2022, 36, .	0.5	2
115	Construction and validation of lentiviral vector carrying rat neuronal nitric oxide synthase in vitro and in vivo. Journal of Neuroscience Methods, 2012, 211, 77-83.	2.5	1
116	Chronic AT1 receptor blockade normalizes NR1 expression within the paraventricular nucleus (PVN) in rats with heart failure (HF). FASEB Journal, 2007, 21, A1267.	0.5	1
117	Gene transfer of angiotensin converting enzyme 2 to the paraventricular nucleus improves attenuated nitric oxide mechanism in rats with chronic heart failure. FASEB Journal, 2009, 23, 956.2.	0.5	1
118	Role of the Renal Nerves in Regulating SGLT2 inhibitorâ€induced Diuresis and Natriuresis in rats with Heart Failure. FASEB Journal, 2020, 34, 1-1.	0.5	1
119	Exercise training normalizes enhanced NMDAâ€mediated changes in renal sympathetic nerve activity and NR1 expression within the PVN in heart failure rats. FASEB Journal, 2006, 20, A1203.	0.5	0
120	Angiotensin IIâ€mediated sympathoexcitation in diabetes: Role of superoxide. FASEB Journal, 2006, 20, A1208.	0.5	0
121	Contribution of renal epithelial sodium channel in sodium retention during chronic heart failure. FASEB Journal, 2008, 22, 1159.18.	0.5	0
122	INCREASED CARBONYLATION OF VENTRICULAR MYOSIN HEAVY CHAINS DURING DIABETES. FASEB Journal, 2009, 23, 989.7.	0.5	0
123	Exercise training improves heat balance during exercise depending on tail vasodilatation mediated by modification in vascular reactivity. FASEB Journal, 2009, 23, 955.34.	0.5	0
124	Enhanced heat loss despite blunted renal sympathoexcitation in diabetic rats during heat stress. FASEB Journal, 2009, 23, 788.3.	0.5	0
125	CARBONYLATION CONTRIBUTES TO SERCA2 ACTIVITY LOSS DURING DIABETES. FASEB Journal, 2009, 23, 989.2.	0.5	0
126	Enhanced activation of the median preâ€optic nucleus contributes to the activation of the paraventricualr nucleus in heart failure. FASEB Journal, 2010, 24, 1019.14.	0.5	0

#	Article	IF	CITATIONS
127	Increased expression of CAPON (Carboxyâ€ŧerminal PDZ ligand of nNOS) within the paraventricular nucleus (PVN) of rats with heart failure (HF) FASEB Journal, 2010, 24, 1019.4.	0.5	0
128	Contribution of the paraventricular nucleus in the heat stressâ€induced cardiovascular adjustments. FASEB Journal, 2010, 24, 992.3.	0.5	0
129	Spinal Cord GABA Receptors Inhibit the Exercise Pressor Reflex in Decerebrate Rats. FASEB Journal, 2012, 26, 1087.6.	0.5	0
130	Blunted Responses of Renal Sympathetic Nerve Activity to Câ€ŧype Natriuretic Peptide in the PVN of Rats with Heart Failure. FASEB Journal, 2012, 26, 1091.64.	0.5	0
131	Activated subfornical organ contributes to enhanced sympathoexcitation during chronic heart failure. FASEB Journal, 2012, 26, 703.16.	0.5	0
132	Dendritic release of VP mediates crosstalk between neuroendocrine and presympathetic PVN neurons: Role in osmoticallyâ€driven homeostatic responses. FASEB Journal, 2012, 26, .	0.5	0
133	Central Leptinâ€glutamate Signaling Contributes to the Exaggerated Sympathoâ€excitation in Rats with Type 2 Diabetes. FASEB Journal, 2012, 26, 705.2.	0.5	0
134	Contribution of PIN in the regulation of neuronal nitric oxide synthase in the PVN of Rats with chronic heart failure. FASEB Journal, 2012, 26, 703.17.	0.5	0
135	Enhanced levels of proteases in tubular fluid activate ENaC in chronic heart failure. FASEB Journal, 2013, 27, 698.2.	0.5	0
136	Exercise Training (ExT) Normalizes Subfornical Organ (SFO)―Mediated Sympathoexcitation in Chronic Heart Failure (HF). FASEB Journal, 2013, 27, 699.14.	0.5	0
137	Abstract 15532: Altered Ubiquitination and Stability of Protein Inhibitor of Neuronal Nitric Oxide Synthase in the Paraventricular Nucleus of Chronic Heart Failure Rats: Role of Angiotensin II. Circulation, 2014, 130, .	1.6	0
138	Angiotensin II Upregulates CAPON Expression via ERKâ€MAPKâ€CREB Pathway in the Paraventricular Nucleus of Rats with Chronic Heart Failure. FASEB Journal, 2015, 29, 987.7.	0.5	0
139	Enhanced levels of Proteases in Tubular Fluid Activate ENaC in Chronic Heart Failure: Roles for Renal Nerves and Renal Injury. FASEB Journal, 2015, 29, 829.1.	0.5	0
140	Reduced miRâ€133a Results in Upregulation of Angiotensinogen in the Paraventricular Nucleus of Rats with Chronic Heart Failure. FASEB Journal, 2015, 29, 829.2.	0.5	0
141	Does Glucagonâ€like peptideâ€1 induce Diuresis and Natriuresis by Modulating Afferent Renal Nerve Activity?. FASEB Journal, 2018, 32, 598.4.	0.5	0
142	Leptinâ€mediated Sympathoâ€excitation in Obese Rats: Role for Astrocyteâ€Neuron Crosstalk in the Arcuate Nucleus. FASEB Journal, 2018, 32, 919.2.	0.5	0
143	Central Angiotensin II regulates Protein Inhibitor of Neuronal Nitric Oxide Synthase through postâ€ŧranslational mechanisms in the Paraventricular Nucleus resulting in increased Sympathetic outflow. FASEB Journal, 2018, 32, 900.4.	0.5	Ο
144	Differences in Excitatory and Inhibitory Balance within the Paraventricular Nucleus Reflects Response Variability to Acute Stress. FASEB Journal, 2018, 32, 737.9.	0.5	0

#	Article	IF	CITATIONS
145	Role of the Neurogenic Signaling on Cardiac miRâ€18â€5p/HIFâ€1α Axis to Enhance Mitochondrial Abnormality in Neurogenic Hypertension. FASEB Journal, 2019, 33, 532.1.	0.5	0
146	Role of the renal nerves in regulating GLPâ€1 mediated diuresis and natriuresis in rats with heart failure. FASEB Journal, 2019, 33, 857.1.	0.5	0
147	Neuronal Nitric Oxide Synthase Associated Protein: Nos1ap mediates Sympathoexcitation through Paraventricular Nucleus of the Hypothalamus. FASEB Journal, 2020, 34, 1-1.	0.5	0
148	Abstract 17215: Exercise Training Restores Dimeric nNOS by Regulating PIN Expression in the Paraventricular Nucleus of Chronic Heart Failure Rats. Circulation, 2015, 132, .	1.6	0