Konstantinos Papagelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/45494/publications.pdf

Version: 2024-02-01

109321 34986 9,901 125 35 citations h-index papers

98 g-index 128 128 128 14470 docs citations citing authors all docs times ranked

#	Article	lF	CITATIONS
1	Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 2010, 35, 357-401.	24.7	2,738
2	Chemical oxidation of multiwalled carbon nanotubes. Carbon, 2008, 46, 833-840.	10.3	2,376
3	Subjecting a Graphene Monolayer to Tension and Compression. Small, 2009, 5, 2397-2402.	10.0	400
4	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	4.4	333
5	Compression Behavior of Single-Layer Graphenes. ACS Nano, 2010, 4, 3131-3138.	14.6	282
6	Raman 2D-Band Splitting in Graphene: Theory and Experiment. ACS Nano, 2011, 5, 2231-2239.	14.6	271
7	Development of a universal stress sensor for graphene and carbon fibres. Nature Communications, 2011, 2, .	12.8	172
8	Deformation of Wrinkled Graphene. ACS Nano, 2015, 9, 3917-3925.	14.6	143
9	Temperature-induced valence transition and associated lattice collapse in samarium fulleride. Nature, 2003, 425, 599-602.	27.8	142
10	Temperature dependence of exciton peak energies in ZnS, ZnSe, and ZnTe epitaxial films. Journal of Applied Physics, 1999, 86, 4403-4411.	2.5	119
11	Optical detection of strain and doping inhomogeneities in single layer MoS2. Applied Physics Letters, 2016, 108, .	3.3	119
12	Phonon properties of graphene derived from molecular dynamics simulations. Scientific Reports, 2015, 5, 12923.	3.3	113
13	Two-dimensional electronic and vibrational band structure of uniaxially strained graphene fromab initiocalculations. Physical Review B, 2009, 80, .	3.2	105
14	Stress Transfer Mechanisms at the Submicron Level for Graphene/Polymer Systems. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4216-4223.	8.0	105
15	In-plane force fields and elastic properties of graphene. Journal of Applied Physics, 2013, 113, .	2.5	98
16	Raman study of Mg, Si, O, and N implanted GaN. Journal of Applied Physics, 2003, 94, 4389-4394.	2.5	95
17	Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy. 2D Materials, 2018, 5, 015016.	4.4	95
18	Graphene flakes under controlled biaxial deformation. Scientific Reports, 2016, 5, 18219.	3.3	84

#	Article	IF	Citations
19	Lattice Dynamical Properties of the Rare Earth Aluminum Garnets (RE3Al5O12). Physica Status Solidi (B): Basic Research, 2002, 233, 134-150.	1.5	65
20	Phonon and Structural Changes in Deformed Bernal Stacked Bilayer Graphene. Nano Letters, 2012, 12, 687-693.	9.1	65
21	Failure Processes in Embedded Monolayer Graphene under Axial Compression. Scientific Reports, 2014, 4, 5271.	3.3	65
22	Pressure screening in the interior of primary shells in double-wall carbon nanotubes. Physical Review B, 2005, 71, .	3.2	62
23	The effect of oxidation treatment on the properties of multi-walled carbon nanotube thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 135-138.	3.5	62
24	Raman spectroscopy of graphene at high pressure: Effects of the substrate and the pressure transmitting media. Physical Review B, 2013, 88, .	3.2	56
25	Mechanical Stability of Flexible Graphene-Based Displays. ACS Applied Materials & 2016, 8, 22605-22614.	8.0	56
26	Suspended monolayer graphene under true uniaxial deformation. Nanoscale, 2015, 7, 13033-13042.	5.6	52
27	Thermal properties enhancement of epoxy resins by incorporating polybenzimidazole nanofibers filled with graphene and carbon nanotubes as reinforcing material. Polymer Testing, 2020, 82, 106317.	4.8	52
28	Strained hexagonal boron nitride: Phonon shift and Gr $\tilde{A}^{1}\!\!/\!\!4$ neisen parameter. Physical Review B, 2018, 97, .	3.2	51
29	Chemical Synthesis and Self-Assembly of Hollow Ni/Ni ₂ P Hybrid Nanospheres. Journal of Physical Chemistry C, 2010, 114, 7582-7585.	3.1	50
30	Wrinkled Few-Layer Graphene as Highly Efficient Load Bearer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26593-26601.	8.0	46
31	Structural Defects Modulate Electronic and Nanomechanical Properties of 2D Materials. ACS Nano, 2021, 15, 2520-2531.	14.6	46
32	Experimentally derived axial stress–strain relations for two-dimensional materials such as monolayer graphene. Carbon, 2015, 81, 322-328.	10.3	43
33	Infrared spectroscopy and lattice dynamical calculations of Gd3Al5O12, Tb3Al5O12 and Lu3Al5O12 single crystals. Journal of Physics and Chemistry of Solids, 2003, 64, 599-605.	4.0	41
34	Vibrational properties of the rare earth aluminum garnets. Journal of Applied Physics, 2003, 94, 6491-6498.	2.5	38
35	Graphene production by dissociation of camphor molecules on nickel substrate. Thin Solid Films, 2013, 527, 31-37.	1.8	37
36	Vibrational properties of (Gd1â^'xYx)3Ga5O12 solid solutions. Journal of Applied Physics, 2010, 107, .	2.5	36

#	Article	IF	Citations
37	Waterâ€Soluble Carbon Nanotubes by Redox Radical Polymerization. Macromolecular Rapid Communications, 2007, 28, 1553-1558.	3.9	35
38	High-pressure Raman study and lattice dynamical calculations for SrWO4. Journal of Physics Condensed Matter, 2002, 14, 12641-12650.	1.8	34
39	Novel Hybrid Materials Consisting of Regioregular Poly(3â€octylthiophene)s Covalently Attached to Singleâ€Wall Carbon Nanotubes. Chemistry - A European Journal, 2008, 14, 8715-8724.	3.3	32
40	Double-wall carbon nanotubes under pressure: Probing the response of individual tubes and their intratube correlation. Physical Review B, 2005, 72, .	3.2	29
41	Buckypaper as Pt-free cathode electrode in photoactivated fuel cells. Electrochimica Acta, 2012, 80, 399-404.	5.2	29
42	Covalently functionalized carbon nanotubes as macroinitiators for radical polymerization. Physica Status Solidi (B): Basic Research, 2007, 244, 4046-4050.	1.5	28
43	Open structured in comparison with dense multi-walled carbon nanotube buckypapers and their composites. Composites Science and Technology, 2013, 77, 52-59.	7.8	28
44	A novel mild method for surface treatment of carbon fibres in epoxy-matrix composites. Composites Science and Technology, 2018, 157, 178-184.	7.8	28
45	Negative Thermal Expansion in the Mixed Valence Ytterbium Fulleride, Yb2.75C60. Chemistry of Materials, 2005, 17, 4474-4478.	6.7	26
46	Biaxial strain engineering of CVD and exfoliated single- and bi-layer MoS ₂ crystals. 2D Materials, 2021, 8, 015023.	4.4	26
47	High pressure Raman study of BaMoO4. Physica Status Solidi (B): Basic Research, 2004, 241, 3155-3160.	1.5	25
48	Compressive response and buckling of graphene nanoribbons. Scientific Reports, 2018, 8, 9593.	3.3	25
49	Raman spectroscopic study of carbon substitution in MgB2. Journal of Physics and Chemistry of Solids, 2004, 65, 73-77.	4.0	24
50	Embedded trilayer graphene flakes under tensile and compressive loading. 2D Materials, 2015, 2, 024009.	4.4	24
51	On the nature of the laser irradiation induced reversible softening of phonon modes in C60 single crystals. Chemical Physics Letters, 1998, 290, 125-130.	2.6	23
52	$\hat{1}\frac{1}{4}$ + SR study of carbon-doped MgB 2 superconductors. Europhysics Letters, 2003, 61, 254-260.	2.0	23
53	High pressure Raman study of Y3Al5O12. Physica Status Solidi (B): Basic Research, 2004, 241, 3149-3154.	1.5	23
54	Polymer and Hybrid Electron Accepting Materials Based on a Semiconducting Perfluorophenylquinoline. Macromolecules, 2010, 43, 4827-4828.	4.8	23

#	Article	IF	Citations
55	Epoxidized multi-walled carbon nanotube buckypapers: A scaffold for polymer nanocomposites with enhanced mechanical properties. Chemical Engineering Journal, 2015, 281, 793-803.	12.7	23
56	Controllable, eco-friendly, synthesis of highly crystalline 2D-MoS ₂ and clarification of the role of growth-induced strain. 2D Materials, 2018, 5, 035035.	4.4	23
57	Efficient exfoliation of graphene sheets in binary solvents. Materials Letters, 2013, 94, 47-50.	2.6	22
58	Structural Properties of Chemically Functionalized Carbon Nanotube Thin Films. Materials, 2013, 6, 2360-2371.	2.9	22
59	Uniaxial compression of suspended single and multilayer graphenes. 2D Materials, 2016, 3, 025033.	4.4	21
60	Carbon nanotubes decorated with terpyridineâ€ruthenium complexes. Journal of Polymer Science Part A, 2009, 47, 2551-2559.	2.3	20
61	Single-walled carbon nanotubes decorated with a pyrene–fluorenevinylene conjugate. Nanotechnology, 2009, 20, 135606.	2.6	20
62	Long-lived discrete breathers in free-standing graphene. Chaos, Solitons and Fractals, 2016, 87, 262-267.	5.1	20
63	Raman study of metallic carbon nanotubes at elevated pressure. Diamond and Related Materials, 2006, 15, 1075-1079.	3.9	19
64	N-Octyl-O-sulfate chitosan stabilises single wall carbon nanotubes in aqueous media and bestows biocompatibility. Nanoscale, 2009, 1, 366.	5.6	19
65	High pressure Raman scattering of silicon nanowires. Nanotechnology, 2011, 22, 195707.	2.6	19
66	Electronic Properties of Semiconducting Polymer-Functionalized Single Wall Carbon Nanotubes. Macromolecules, 2013, 46, 2590-2598.	4.8	19
67	Colloidal stability of carbon nanotubes in an aqueous dispersion of phospholipid. International Journal of Nanomedicine, 2007, 2, 761-6.	6.7	19
68	Diameter-Selective Solubilization of Carbon Nanotubes by Lipid Micelles. Journal of Nanoscience and Nanotechnology, 2008, 8, 420-423.	0.9	17
69	Compression behavior of simply-supported and fully embedded monolayer graphene: Theory and experiment. Extreme Mechanics Letters, 2016, 8, 191-200.	4.1	17
70	Mechanical, Electrical, and Thermal Properties of Carbon Nanotube Buckypapers/Epoxy Nanocomposites Produced by Oxidized and Epoxidized Nanotubes. Materials, 2020, 13, 4308.	2.9	17
71	Lattice collapse in mixed-valence samarium fulleride Sm2.75C60 at high pressure. Dalton Transactions, 2004, , 3144.	3.3	16

Temperature and Composition Dependence of Exciton Peak Positions and Band Gap Energies of

#	Article	ΙF	Citations
73	Phonons in Rare-Earth Aluminum Garnets and Their Relation to Lattice Vibration of AlO4. Physica Status Solidi (B): Basic Research, 1999, 215, 193-198.	1.5	14
74	Infrared lattice spectra of Tm3Al5O12and Yb3Al5O12single crystals. Journal of Physics Condensed Matter, 2002, 14, 915-923.	1.8	14
7 5	Strain Engineering in Highly Wrinkled CVD Graphene/Epoxy Systems. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43192-43202.	8.0	14
76	High-pressure effects on the Raman spectrum and the force constants of the rare-earth aluminium garnets (RE3Al5O12). Journal of Physics Condensed Matter, 2002, 14, 3875-3890.	1.8	13
77	Phononic band gap engineering in graphene. Journal of Applied Physics, 2012, 112, .	2.5	13
78	Atomistic potential for graphene and other sp ² carbon systems. Physical Chemistry Chemical Physics, 2017, 19, 30925-30932.	2.8	13
79	Pressure-induced charge transfer phase transition in crystalline C60*C10H12Se4*2(CS2) molecular complex studied by Raman spectroscopy. Chemical Physics Letters, 1997, 281, 360-365.	2.6	12
80	Effect of high hydrostatic pressure on the phonon modes of Tb3Al5O12 and Dy3Al5O12 single crystals. Physica B: Condensed Matter, 1999, 265, 277-281.	2.7	12
81	High Pressure Raman Study of Lu3Al5O12. Physica Status Solidi (B): Basic Research, 1999, 211, 301-307.	1.5	12
82	Exotic carbon nanostructures obtained through controllable defect engineering. RSC Advances, 2015, 5, 39930-39937.	3.6	12
83	Stress and charge transfer in uniaxially strained CVD graphene. Physica Status Solidi (B): Basic Research, 2016, 253, 2355-2361.	1.5	12
84	Comparative Raman Study of the 1D and 2D Polymeric Phases of C60 under Pressure. Physica Status Solidi (B): Basic Research, 1999, 215, 443-448.	1.5	11
85	Raman spectroscopy of single wall carbon nanotubes functionalized with terpyridine–ruthenium complexes. Physica Status Solidi (B): Basic Research, 2009, 246, 2721-2723.	1.5	11
86	One Pot Synthesis and Characterization of Ultra Fine CeO ₂ and Cu/CeO ₂ Nanoparticles. Application for Low Temperature CO Oxidation. Journal of Nanoscience and Nanotechnology, 2011, 11, 8593-8598.	0.9	11
87	Phase separation in carbon-doped MgB2 studied by means of alternating current susceptibility measurements. Journal of Physics Condensed Matter, 2002, 14, 7363-7369.	1.8	9
88	Elastic Properties of Crystalline–Amorphous Core–Shell Silicon Nanowires. Journal of Physical Chemistry C, 2013, 117, 4219-4226.	3.1	9
89	Doping-Induced Stacking Transition in Trilayer Graphene: Implications for Layer Stacking Manipulation. ACS Applied Nano Materials, 2020, 3, 11861-11868.	5.0	9
90	Efficient Mechanical Stress Transfer in Multilayer Graphene with a Ladder-like Architecture. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4473-4484.	8.0	9

#	Article	IF	Citations
91	Raman modes of the two-dimensional tetragonal polymeric phase of C60 under high pressure. Journal of Chemical Physics, 2001, 114, 9099-9104.	3.0	8
92	Raman study of polycrystalline PbWO4under high pressure. High Pressure Research, 2006, 26, 421-425.	1.2	8
93	Magnetic ordering in the ammoniated alkali fullerides (NH3)K3â^3xRbxC60(x= 2, 3). Journal of Physics Condensed Matter, 2007, 19, 386235.	1.8	8
94	High pressure Raman study of the secondâ€order vibrational modes of singleâ€ond doubleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4069-4073.	1.5	8
95	Transforming graphene nanoribbons into nanotubes by use of point defects. Journal of Physics Condensed Matter, 2014, 26, 125301.	1.8	8
96	Antiferromagnetic ordering in the expanded (NH3)Rb3C60 fulleride. Physica B: Condensed Matter, 2003, 326, 572-576.	2.7	7
97	Second-order Raman study of double-wall carbon nanotubes under high pressure. Physica Status Solidi (B): Basic Research, 2007, 244, 116-120.	1.5	7
98	Carbon nanotube–fluorenevinylene hybrids: Synthesis and photophysical properties. Chemical Physics Letters, 2009, 483, 241-246.	2.6	7
99	Thermomechanical Response of Supported Hexagonal Boron Nitride Sheets of Various Thicknesses. Journal of Physical Chemistry C, 2020, 124, 12134-12143.	3.1	7
100	Effect of high hydrostatic pressure on the intramolecular modes of (C59N)2. Physical Review B, 1999, 59, 3180-3183.	3.2	6
101	High pressure effects on the Raman spectrum of CsC60 polymer. Physica B: Condensed Matter, 1999, 265, 234-238.	2.7	6
102	Time-Resolved Raman Scattering in Exfoliated and CVD Graphene Crystals. Journal of Physical Chemistry C, 2021, 125, 21003-21010.	3.1	6
103	Lattice dynamics and thermodynamic properties of Y3Al5O12 (YAG). Journal of Physics and Chemistry of Solids, 2021, 162, 110512.	4.0	6
104	11B NMR Study of Pure and Lightly Carbon-Doped MgB2 Superconductors. Journal of Superconductivity and Novel Magnetism, 2005, 18, 521-528.	0.5	5
105	Phosphorous Diffusion in N2+-Implanted Germanium during Flash Lamp Annealing: Influence of Nitrogen on Ge Substrate Damage and Capping Layer Engineering. ECS Journal of Solid State Science and Technology, 2017, 6, P418-P428.	1.8	5
106	Width Dependent Elastic Properties of Graphene Nanoribbons. Materials, 2021, 14, 5042.	2.9	5
107	μSR studies of superconducting MgB1.96C0.04. Physica B: Condensed Matter, 2003, 326, 346-349.	2.7	4
108	Pressure evolution of the phonon modes and force constants of Tb3Al5O12 and Lu3Al5O12. Physica Status Solidi (B): Basic Research, 2003, 235, 348-353.	1.5	4

#	Article	IF	CITATIONS
109	High-pressure Raman study of the Sm _{2.75} C ₆₀ fulleride. High Pressure Research, 2011, 31, 13-17.	1.2	4
110	An Evaluation of Graphene as a Multi-Functional Heating Element for Biomedical Applications. Journal of Biomedical Nanotechnology, 2018, 14, 86-97.	1.1	4
111	Phonon Modes in Yb3Al5O12: Pressure Dependence and Model Calculations. Physica Status Solidi (B): Basic Research, 2001, 223, 343-347.	1.5	3
112	Evidence of Electron–Phonon Interaction in Al-Substituted Mg1-xAlxB2. Journal of Superconductivity and Novel Magnetism, 2004, 17, 199-203.	0.5	3
113	The pressure response of Raman active phonon modes of Tm3Al5O12. High Pressure Research, 2000, 18, 117-123.	1.2	2
114	Inelastic neutron scattering study of the intermolecular vibrational modes of Ba4C60. Chemical Physics Letters, 2003, 377, 125-130.	2.6	2
115	High-pressure Raman study of stacked-cup carbon nanofibers. High Pressure Research, 2011, 31, 131-135.	1.2	2
116	Raman spectroscopic study of the rare-earth fullerides Eu6â^'xSrxC60. Nanoscale, 2011, 3, 2490.	5.6	2
117	Charge Transfer in C60*TMTSF*2(CS2) Complex at High Pressure: A Raman Spectroscopic Study Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 733-735.	0.0	2
118	Softening of phonon modes in C60 crystals induced by laser irradiation: Thermal effects. Journal of Experimental and Theoretical Physics, 1998, 87, 967-972.	0.9	1
119	The Role of the Intradimer C-C Bridge on the Stability of (C59N)2: A High Pressure Raman Study. Physica Status Solidi (B): Basic Research, 1999, 211, 435-441.	1.5	1
120	High pressure study of the 2D polymeric phase of C60by means of raman spectroscopy. High Pressure Research, 2000, 18, 145-151.	1.2	1
121	Phonon-drag thermopower of a ballistic semiconducting single-wall carbon nanotube. AIP Conference Proceedings, 2007, , .	0.4	1
122	Uniaxially Strained Graphene: Structural Characteristics and G-Mode Splitting. Materials, 2022, 15, 67.	2.9	1
123	The effect of anisotropic intermolecular interactions on the pressure response of polymeric fullerenes. Physica Status Solidi (B): Basic Research, 2003, 235, 369-373.	1.5	0
124	Thermal Characterization of Porous Silicon Micro-Hotplates using IR Thermography. , 2007, , .		0
125	Chapter 9. Raman Spectroscopy of Carbon Nanotube–Polymer Hybrid Materials. RSC Nanoscience and Nanotechnology, 2013, , 253-269.	0.2	O