Naoyuki Kataoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4549381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Messenger-RNA-binding proteins and the messages they carry. Nature Reviews Molecular Cell Biology, 2002, 3, 195-205.	37.0	1,245
2	Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes and Development, 2006, 20, 355-367.	5.9	514
3	A Novel Function for SMN, the Spinal Muscular Atrophy Disease Gene Product, in Pre-mRNA Splicing. Cell, 1998, 95, 615-624.	28.9	507
4	Pre-mRNA Splicing Imprints mRNA in the Nucleus with a Novel RNA-Binding Protein that Persists in the Cytoplasm. Molecular Cell, 2000, 6, 673-682.	9.7	304
5	Role of the Nonsense-Mediated Decay Factor hUpf3 in the Splicing-Dependent Exon-Exon Junction Complex. Science, 2001, 293, 1832-1836.	12.6	265
6	Transportin-mediated Nuclear Import of Heterogeneous Nuclear RNP Proteins. Journal of Cell Biology, 1997, 138, 1181-1192.	5.2	232
7	Transportin-SR, a Nuclear Import Receptor for SR Proteins. Journal of Cell Biology, 1999, 145, 1145-1152.	5.2	206
8	SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO Journal, 2001, 20, 5443-5452.	7.8	194
9	Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO Journal, 2001, 20, 6424-6433.	7.8	191
10	The Y14 protein communicates to the cytoplasm the position of exon-exon junctions. EMBO Journal, 2001, 20, 2062-2068.	7.8	175
11	Stress-responsive maturation of Clk1/4 pre-mRNAs promotes phosphorylation of SR splicing factor. Journal of Cell Biology, 2011, 195, 27-40.	5.2	135
12	Shigella effector IpaH9.8 binds to a splicing factor U2AF35 to modulate host immune responses. Biochemical and Biophysical Research Communications, 2005, 333, 531-539.	2.1	106
13	Isolation and characterization of post-splicing lariat–intron complexes. Nucleic Acids Research, 2009, 37, 891-902.	14.5	95
14	Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2764-2769.	7.1	93
15	Chemical treatment enhances skipping of a mutated exon in the dystrophin gene. Nature Communications, 2011, 2, 308.	12.8	81
16	A nuclear cap binding protein from HeLa cells. Nucleic Acids Research, 1990, 18, 6989-6995.	14.5	78
17	Structures of SMG1-UPFs Complexes: SMG1 Contributes to Regulate UPF2-Dependent Activation of UPF1 in NMD. Structure, 2014, 22, 1105-1119.	3.3	74
18	RNA length defines RNA export pathway. Genes and Development, 2004, 18, 2074-2085.	5.9	68

Ναογμκι Καταοκά

#	Article	IF	CITATIONS
19	Functional Association of the Microprocessor Complex with the Spliceosome. Molecular and Cellular Biology, 2009, 29, 3243-3254.	2.3	67
20	Regulation of Gene Expression under Hypoxic Conditions. International Journal of Molecular Sciences, 2019, 20, 3278.	4.1	65
21	A Simple Whole Cell Lysate System for in Vitro Splicing Reveals a Stepwise Assembly of the Exon-Exon Junction Complex. Journal of Biological Chemistry, 2004, 279, 7009-7013.	3.4	56
22	Human nonsense-mediated mRNA decay factor UPF2 interacts directly with eRF3 and the SURF complex. Nucleic Acids Research, 2016, 44, 1909-1923.	14.5	50
23	ldentification of the factors that interact with NCBP, an 80 kDa nuclear cap binding protein. Nucleic Acids Research, 1995, 23, 3638-3641.	14.5	49
24	Cloning of a complementary DNA encoding an 80 kilodalton nuclear cap binding protein. Nucleic Acids Research, 1994, 22, 3861-3865.	14.5	45
25	Herpesvirus protein ICP27 switches PML isoform by altering mRNA splicing. Nucleic Acids Research, 2009, 37, 6515-6527.	14.5	44
26	Combination of Clk family kinase and SRp75 modulates alternative splicing of Adenovirus E1A. Genes To Cells, 2008, 13, 233-244.	1.2	43
27	Tissue-specific splicing regulator Fox-1 induces exon skipping by interfering E complex formation on the downstream intron of human F1Â gene. Nucleic Acids Research, 2007, 35, 5303-5311.	14.5	40
28	Ce-Y14 and MAG-1, components of the exon–exon junction complex, are required for embryogenesis and germline sexual switching in Caenorhabditis elegans. Mechanisms of Development, 2004, 121, 27-35.	1.7	36
29	Cytosolic domain of SIDT2 carries an arginine-rich motif that binds to RNA/DNA and is important for the direct transport of nucleic acids into lysosomes. Autophagy, 2020, 16, 1974-1988.	9.1	35
30	Importance of Serum Amino Acid Profile for Induction of Hepatic Steatosis under Protein Malnutrition. Scientific Reports, 2018, 8, 5461.	3.3	31
31	The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression. International Journal of Molecular Sciences, 2016, 17, 1153.	4.1	27
32	Design and synthesis of a potent inhibitor of class 1 DYRK kinases as a suppressor of adipogenesis. Bioorganic and Medicinal Chemistry, 2015, 23, 4434-4441.	3.0	26
33	Preparation of Efficient Splicing Extracts From Whole Cells, Nuclei, and Cytoplasmic Fractions. Methods in Molecular Biology, 2008, 488, 357-365.	0.9	25
34	Modulation of aberrant splicing in human RNA diseases by chemical compounds. Human Genetics, 2017, 136, 1237-1245.	3.8	22
35	Myelodysplastic Syndrome-Associated SRSF2 Mutations Cause Splicing Changes by Altering Binding Motif Sequences. Frontiers in Genetics, 2019, 10, 338.	2.3	22
36	SR proteins preferentially associate with mRNAs in the nucleus and facilitate their export to the cytoplasm. Genes To Cells, 2004, 9, 959-965.	1.2	19

Ναογμκι Καταοκά

#	Article	IF	CITATIONS
37	Specific Y14 domains mediate its nucleo-cytoplasmic shuttling and association with spliced mRNA. Scientific Reports, 2011, 1, 92.	3.3	19
38	hDbr1 is a nucleocytoplasmic shuttling protein with a protein phosphatase-like motif essential for debranching activity. Scientific Reports, 2013, 3, 1090.	3.3	19
39	Identification of a novel component C2ORF3 in the lariat–intron complex: lack of C2ORF3 interferes with preâ€m <scp>RNA</scp> splicing via intron turnover pathway. Genes To Cells, 2014, 19, 78-87.	1.2	18
40	Transcriptional coactivator PGC-1 \hat{l} ± contains a novel CBP80-binding motif that orchestrates efficient target gene expression. Genes and Development, 2018, 32, 555-567.	5.9	18
41	RBM24 promotes U1 snRNP recognition of the mutated 5′ splice site in the IKBKAP gene of familial dysautonomia. Rna, 2017, 23, 1393-1403.	3.5	14
42	Transport Granules Bound with Nuclear Cap Binding Protein and Exon Junction Complex Are Associated with Microtubules and Spatially Separated from eIF4E Granules and P Bodies in Human Neuronal Processes. Frontiers in Molecular Biosciences, 2017, 4, 93.	3.5	14
43	Identification of the Specific Interactors of the Human Lariat RNA Debranching Enzyme 1 Protein. International Journal of Molecular Sciences, 2015, 16, 3705-3721.	4.1	12
44	Dendritic transport element of human arc <scp>mRNA</scp> confers <scp>RNA</scp> degradation activity in a translationâ€dependent manner. Genes To Cells, 2016, 21, 1263-1269.	1.2	12
45	Insulin receptor substrateâ€1 (IRSâ€1) forms a ribonucleoprotein complex associated with polysomes. FEBS Letters, 2013, 587, 2319-2324.	2.8	11
46	Insulin Receptor Substrate-1 Associates with Small Nucleolar RNA Which Contributes to Ribosome Biogenesis. Frontiers in Endocrinology, 2014, 5, 24.	3.5	11
47	IRS-2 deubiquitination by USP9X maintains anchorage-independent cell growth via Erk1/2 activation in prostate carcinoma cell line. Oncotarget, 2018, 9, 33871-33883.	1.8	11
48	The cysteine residue at 424th of pyruvate kinase M2 is crucial for tetramerization and responsiveness to oxidative stress. Biochemical and Biophysical Research Communications, 2020, 526, 973-977.	2.1	10
49	Dietary lysine restriction induces lipid accumulation in skeletal muscle through an increase in serum threonine levels in rats. Journal of Biological Chemistry, 2021, 297, 101179.	3.4	8
50	Mechanistic Insights of Aberrant Splicing with Splicing Factor Mutations Found in Myelodysplastic Syndromes. International Journal of Molecular Sciences, 2021, 22, 7789.	4.1	6
51	A novel amino acid signaling process governs glucose-6-phosphatase transcription. IScience, 2021, 24, 102778.	4.1	4
52	Rbfox2 mediates exon 11 inclusion in insulin receptor pre-mRNA splicing in hepatoma cells. Biochimie, 2021, 187, 25-32.	2.6	4
53	Rbm38 Reduces the Transcription Elongation Defect of the SMEK2 Gene Caused by Splicing Deficiency. International Journal of Molecular Sciences, 2020, 21, 8799.	4.1	3
54	Heat Treatment of Nuclear Extract Alters Selection of the 3′ Splice Site in Pre-mRNA Splicing. Biochemical and Biophysical Research Communications, 1993, 190, 223-228.	2.1	2

Ναογμκι Καταοκά

#	Article	IF	CITATIONS
55	Multiple nuclear localization sequences in SRSF4 protein. Genes To Cells, 2020, 25, 327-333.	1.2	2
56	Editorial: RNA Diseases in Humans—From Fundamental Research to Therapeutic Applications. Frontiers in Molecular Biosciences, 2019, 6, 53.	3.5	1
57	Promoter-Level Transcriptome Identifies Stemness Associated With Relatively High Proliferation in Pancreatic Cancer Cells. Frontiers in Oncology, 2020, 10, 316.	2.8	1
58	Purification of RNA–Protein Splicing Complexes Using a Tagged Protein from In Vitro Splicing Reaction Mixture. Methods in Molecular Biology, 2016, 1421, 45-52.	0.9	1
59	Messenger-RNA-binding proteins and the messages they carry. , 0, .		1
60	Editorial: Non-Coding RNAs in Breast Cancer. Frontiers in Oncology, 2021, 11, 789798.	2.8	1
61	Ran-regulated interactions of nuclear import and export receptors with nucleoporins. Biochemistry and Cell Biology, 1999, 77, 403.	2.0	Ο
62	Modulation of Abnormal Splicing of RNA Diseases by Small Chemical Compounds. , 2018, , 115-130.		0
63	Human RNA lariat Debranching Enzyme Protein 1 –A surveillant for branch RNAs for degradation. RNA & Disease (Houston, Tex), 0, , .	1.0	Ο
64	Editorial: Interplay Between RNA Processing Machinery and Epigenetic Regulation in Gene Expression. Frontiers in Genetics, 2021, 12, 799874.	2.3	0
65	Mutations equivalent to Drosophila <i>mago nashi</i> mutants imply reduction of Magoh protein incorporation into exon junction complex. Genes To Cells, 2022, , .	1.2	0