Swetlana Sirko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/454836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	14.8	1,098
2	Reactive Glia in the Injured Brain Acquire Stem Cell Properties in Response to Sonic Hedgehog. Cell Stem Cell, 2013, 12, 426-439.	11.1	332
3	Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, In vitro potential, and Genomeâ€wide expression analysis. Glia, 2015, 63, 1452-1468.	4.9	215
4	Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development (Cambridge), 2007, 134, 2727-2738.	2.5	181
5	The Unique 473HD-Chondroitinsulfate Epitope Is Expressed by Radial Glia and Involved in Neural Precursor Cell Proliferation. Journal of Neuroscience, 2006, 26, 4082-4094.	3.6	129
6	Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. ELife, 2018, 7, .	6.0	128
7	Structural characterization of the epitopes of the monoclonal antibodies 473HD, CS-56, and MO-225 specific for chondroitin sulfate D-type using the oligosaccharide library. Glycobiology, 2005, 15, 593-603.	2.5	111
8	Chondroitin Sulfates Are Required for Fibroblast Growth Factor-2-Dependent Proliferation and Maintenance in Neural Stem Cells and for Epidermal Growth Factor-Dependent Migration of Their Progeny. Stem Cells, 2010, 28, 775-787.	3.2	107
9	Astrocyte reactivity after brain injury—: The role of galectins 1 and 3. Glia, 2015, 63, 2340-2361.	4.9	107
10	Conditional deletion of β1â€integrin in astroglia causes partial reactive gliosis. Glia, 2009, 57, 1630-1647.	4.9	103
11	Crossâ€ŧalk between monocyte invasion and astrocyte proliferation regulates scarring in brain injury. EMBO Reports, 2018, 19, .	4.5	98
12	Focal laser-lesions activate an endogenous population of neural stem/progenitor cells in the adult visual cortex. Brain, 2009, 132, 2252-2264.	7.6	64
13	An Emerging Role of Sonic Hedgehog Shedding as a Modulator of Heparan Sulfate Interactions. Journal of Biological Chemistry, 2012, 287, 43708-43719.	3.4	49
14	Structural and Functional Analysis of Chondroitin Sulfate Proteoglycans in the Neural Stem Cell Niche. Methods in Enzymology, 2010, 479, 37-71.	1.0	38
15	Molecular diversity of diencephalic astrocytes reveals adult astrogenesis regulated by Smad4. EMBO Journal, 2021, 40, e107532.	7.8	26
16	Evidence for distinct leptomeningeal cell-dependent paracrine and EGF-linked autocrine regulatory pathways for suppression of fibrillar collagens in astrocytes. Molecular and Cellular Neurosciences, 2007, 36, 71-85.	2.2	17
17	Changes in the Proliferative Program Limit Astrocyte Homeostasis in the Aged Post-Traumatic Murine Cerebral Cortex. Cerebral Cortex, 2017, 27, 4213-4228.	2.9	17
18	Traumatic Brain Injury: At the Crossroads of Neuropathology and Common Metabolic Endocrinopathies. Journal of Clinical Medicine, 2018, 7, 59.	2.4	15

SWETLANA SIRKO

#	Article	IF	CITATIONS
19	Repetitive injury and absence of monocytes promote astrocyte selfâ€renewal and neurological recovery. Clia, 2021, 69, 165-181.	4.9	9
20	Lipoprotein receptor loss in forebrain radial glia results in neurological deficits and severe seizures. Glia, 2020, 68, 2517-2549.	4.9	7
21	Investigating Age-Related Changes in Proliferation and the Cell Division Repertoire of Parenchymal Reactive Astrocytes. Methods in Molecular Biology, 2019, 1938, 277-292.	0.9	5
22	Potential of Glial Cells. , 2013, , 347-361.		4

Potential of Glial Cells. , 2013, , 347-361. 22