Thomas Ott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4547600/publications.pdf Version: 2024-02-01

ΤΗΟΜΛς ΟΤΤ

#	Article	IF	CITATIONS
1	NIN-Like Proteins: Interesting Players in Rhizobia-Induced Nitrate Signaling Response During Interaction with Non-Legume Host <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2022, 35, 230-243.	2.6	3
2	Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science, 2021, 372, 864-868.	12.6	90
3	The plasma membrane–associated Ca ²⁺ â€binding protein, <scp>PCaP1,</scp> is required for oligogalacturonide and flagellinâ€induced priming and immunity. Plant, Cell and Environment, 2021, 44, 3078-3093.	5.7	12
4	Formin-mediated bridging of cell wall, plasma membrane, and cytoskeleton in symbiotic infections of Medicago truncatula. Current Biology, 2021, 31, 2712-2719.e5.	3.9	20
5	Exocyst subunit Exo70B2 is linked to immune signaling and autophagy. Plant Cell, 2021, 33, 404-419.	6.6	31
6	Distinct signaling routes mediate intercellular and intracellular rhizobial infection in <i>Lotus japonicus</i> . Plant Physiology, 2021, 185, 1131-1147.	4.8	26
7	Mutant analysis in the nonlegume <i>Parasponia andersonii</i> identifies NIN and NF‥A1 transcription factors as a core genetic network in nitrogenâ€fixing nodule symbioses. New Phytologist, 2020, 226, 541-554.	7.3	32
8	Establishment of Proximity-Dependent Biotinylation Approaches in Different Plant Model Systems. Plant Cell, 2020, 32, 3388-3407.	6.6	91
9	The Nanoscale Organization of the Plasma Membrane and Its Importance in Signaling: A Proteolipid Perspective. Plant Physiology, 2020, 182, 1682-1696.	4.8	93
10	Optogenetic control of gene expression in plants in the presence of ambient white light. Nature Methods, 2020, 17, 717-725.	19.0	72
11	The <i>Medicago truncatula</i> DREPP Protein Triggers Microtubule Fragmentation in Membrane Nanodomains during Symbiotic Infections. Plant Cell, 2020, 32, 1689-1702.	6.6	23
12	A GmNINa-miR172c-NNC1 Regulatory Network Coordinates the Nodulation and Autoregulation ofÂNodulation Pathways in Soybean. Molecular Plant, 2019, 12, 1211-1226.	8.3	54
13	Commonalities and Differences in Controlling Multipartite Intracellular Infections of Legume Roots by Symbiotic Microbes. Plant and Cell Physiology, 2018, 59, 666-677.	3.1	21
14	Green light for quantitative live-cell imaging in plants. Journal of Cell Science, 2018, 131, .	2.0	71
15	Symbiotic root infections in <i>Medicago truncatula</i> require remorin-mediated receptor stabilization in membrane nanodomains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5289-5294.	7.1	80
16	Membrane nanodomains and microdomains in plant–microbe interactions. Current Opinion in Plant Biology, 2017, 40, 82-88.	7.1	83
17	Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. ELife, 2017, 6, .	6.0	206
18	Molecular principles of membrane microdomain targeting in plants. Trends in Plant Science, 2015, 20, 351-361.	8.8	31

THOMAS OTT

#	Article	IF	CITATIONS
19	Quantitative Image Analysis of Membrane Microdomains Labelled by Fluorescently Tagged Proteins in Arabidopsis thaliana and Nicotiana benthamiana. Bio-protocol, 2015, 5, .	0.4	4
20	Male–female communication triggers calcium signatures during fertilization in Arabidopsis. Nature Communications, 2014, 5, 4645.	12.8	146
21	Plasma Membranes Are Subcompartmentalized into a Plethora of Coexisting and Diverse Microdomains in <i>Arabidopsis</i> and <i>Nicotiana benthamiana</i> Â Â. Plant Cell, 2014, 26, 1698-1711.	6.6	180
22	Cellâ€autonomous defense, reâ€organization and trafficking of membranes in plant–microbe interactions. New Phytologist, 2014, 204, 815-822.	7.3	47
23	The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2014, 141, 4139-4148.	2.5	88
24	Intrinsic Disorder in Plant Proteins and Phytopathogenic Bacterial Effectors. Chemical Reviews, 2014, 114, 6912-6932.	47.7	39
25	Sâ€acylation anchors remorin proteins to the plasma membrane but does not primarily determine their localization in membrane microdomains. New Phytologist, 2014, 203, 758-769.	7.3	62
26	A Modular Plasmid Assembly Kit for Multigene Expression, Gene Silencing and Silencing Rescue in Plants. PLoS ONE, 2014, 9, e88218.	2.5	115
27	Intrinsic Disorder in Pathogen Effectors: Protein Flexibility as an Evolutionary Hallmark in a Molecular Arms Race. Plant Cell, 2013, 25, 3153-3157.	6.6	76
28	Phosphorylation of Intrinsically Disordered Regions in Remorin Proteins. Frontiers in Plant Science, 2012, 3, 86.	3.6	57
29	Plasticity of plasma membrane compartmentalization during plant immune responses. Frontiers in Plant Science, 2012, 3, 181.	3.6	11
30	The Intrinsically Disordered N-terminal Region of AtREM1.3 Remorin Protein Mediates Protein-Protein Interactions. Journal of Biological Chemistry, 2012, 287, 39982-39991.	3.4	86
31	Ascorbate oxidase: The unexpected involvement of a â€~wasteful enzyme' in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi. Plant Physiology and Biochemistry, 2012, 59, 71-79.	5.8	26
32	Functional Domain Analysis of the Remorin Protein LjSYMREM1 in Lotus japonicus. PLoS ONE, 2012, 7, e30817.	2.5	102
33	Transcription Reprogramming during Root Nodule Development in Medicago truncatula. PLoS ONE, 2011, 6, e16463.	2.5	102
34	Regulation of signal transduction and bacterial infection during root nodule symbiosis. Current Opinion in Plant Biology, 2011, 14, 458-467.	7.1	102
35	Perspectives on Remorin Proteins, Membrane Rafts, and Their Role During Plant–Microbe Interactions. Molecular Plant-Microbe Interactions, 2011, 24, 7-12.	2.6	114
36	A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2343-2348.	7.1	316

Тномаѕ Отт

#	Article	IF	CITATIONS
37	Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants. PLoS ONE, 2009, 4, e6556.	2.5	134
38	Remorin, a Solanaceae Protein Resident in Membrane Rafts and Plasmodesmata, Impairs <i>Potato virus X</i> Movement. Plant Cell, 2009, 21, 1541-1555.	6.6	352
39	Absence of Symbiotic Leghemoglobins Alters Bacteroid and Plant Cell Differentiation During Development of <i>Lotus japonicus</i> Root Nodules. Molecular Plant-Microbe Interactions, 2009, 22, 800-808.	2.6	55
40	A gene expression atlas of the model legume <i>Medicago truncatula</i> . Plant Journal, 2008, 55, 504-513.	5.7	668
41	Defects in Rhizobial Cyclic Glucan and Lipopolysaccharide Synthesis Alter Legume Gene Expression During Nodule Development. Molecular Plant-Microbe Interactions, 2008, 21, 50-60.	2.6	21
42	Genome-Wide Annotation of Remorins, a Plant-Specific Protein Family: Evolutionary and Functional Perspectives. Plant Physiology, 2007, 145, 593-600.	4.8	164
43	Identification of New Potential Regulators of the Medicago truncatula—Sinorhizobium meliloti Symbiosis Using a Large-Scale Suppression Subtractive Hybridization Approach. Molecular Plant-Microbe Interactions, 2007, 20, 321-332.	2.6	35
44	Metabolism of Reactive Oxygen Species Is Attenuated in Leghemoglobin-Deficient Nodules of Lotus japonicus. Molecular Plant-Microbe Interactions, 2007, 20, 1596-1603.	2.6	53
45	MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes and Development, 2006, 20, 3084-3088.	5.9	450
46	Spatial and Temporal Organization of Sucrose Metabolism in Lotus japonicus Nitrogen-Fixing Nodules Suggests a Role for the Elusive Alkaline/Neutral Invertase. Plant Molecular Biology, 2006, 62, 53-69.	3.9	40
47	Symbiotic Leghemoglobins Are Crucial for Nitrogen Fixation in Legume Root Nodules but Not for General Plant Growth and Development. Current Biology, 2005, 15, 531-535.	3.9	350
48	The Sulfate Transporter SST1 Is Crucial for Symbiotic Nitrogen Fixation in Lotus japonicus Root Nodules. Plant Cell, 2005, 17, 1625-1636.	6.6	227
49	RNA isolation using CsCl gradients. , 2005, , 125-128.		1
50	Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation inLotus japonicus. Plant Journal, 2004, 39, 487-512.	5.7	292
51	Lotus japonicus LjKUP Is Induced Late During Nodule Development and Encodes a Potassium Transporter of the Plasma Membrane. Molecular Plant-Microbe Interactions, 2004, 17, 789-797.	2.6	38
52	Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiology Ecology, 2002, 42, 359-366.	2.7	78
53	Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiology Ecology, 2002, 42, 359-366.	2.7	3
54	Regulation of the photosynthetic electron transport chain. Planta, 1999, 209, 250-258.	3.2	73

#	Article	IF	CITATIONS
55	Feedback Regulation of Higher Plant Photosynthetic Electron Transport - a Physiological Phenomenon?. , 1998, , 2537-2540.		0