Gunnar Von Heijne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4545651/publications.pdf

Version: 2024-02-01

1614 245 99,523 352 105 303 citations h-index g-index papers 385 385 385 86972 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology, 2022, 40, 1023-1025.	17.5	883
2	Upstream charged and hydrophobic residues impact the timing of membrane insertion of transmembrane helices. FEBS Letters, 2022, 596, 1004-1012.	2.8	1
3	Probing Interplays between Human XBP1u Translational Arrest Peptide and 80S Ribosome. Journal of Chemical Theory and Computation, 2022, 18, 1905-1914.	5.3	5
4	Residue-by-residue analysis of cotranslational membrane protein integration in vivo. ELife, 2021, 10, .	6.0	26
5	The ribosome modulates folding inside the ribosomal exit tunnel. Communications Biology, 2021, 4, 523.	4.4	27
6	Introduction to the Theme on Membrane Channels. Annual Review of Biochemistry, 2021, 90, 503-505.	11.1	0
7	Cotranslational Translocation and Folding of a Periplasmic Protein Domain in Escherichia coli. Journal of Molecular Biology, 2021, 433, 167047.	4.2	9
8	Molten globules lure transmembrane helices away from the membrane. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2112899118.	7.1	0
9	Structural basis of <scp>l</scp> -tryptophan-dependent inhibition of release factor 2 by the TnaC arrest peptide. Nucleic Acids Research, 2021, 49, 9539-9547.	14.5	12
10	Membrane integration and topology of RIFIN and STEVOR proteins of the <i>PlasmodiumÂfalciparum</i> parasite. FEBS Journal, 2020, 287, 2744-2762.	4.7	7
11	The Mgr2 subunit of the TIM23 complex regulates membrane insertion of marginal stopâ€transfer signals in the mitochondrial inner membrane. FEBS Letters, 2020, 594, 1081-1087.	2.8	11
12	Cotranslational folding of alkaline phosphatase in the periplasm of <scp><i>Escherichia coli</i></scp> . Protein Science, 2020, 29, 2028-2037.	7.6	9
13	Cotranslational folding cooperativity of contiguous domains of α-spectrin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14119-14126.	7.1	24
14	Dynamic membrane topology in an unassembled membrane protein. Nature Chemical Biology, 2019, 15, 945-948.	8.0	21
15	A Brief History of Protein Sorting Prediction. Protein Journal, 2019, 38, 200-216.	1.6	154
16	Silencing of Aberrant Secretory Protein Expression by Disease-Associated Mutations. Journal of Molecular Biology, 2019, 431, 2567-2580.	4.2	13
17	Murine astrotactins 1 and 2 have a similar membrane topology and mature via endoproteolytic cleavage catalyzed by a signal peptidase. Journal of Biological Chemistry, 2019, 294, 4538-4545.	3.4	5
18	Force-Profile Analysis of the Cotranslational Folding of HemK and Filamin Domains: Comparison of Biochemical and Biophysical Folding Assays. Journal of Molecular Biology, 2019, 431, 1308-1314.	4.2	30

#	Article	IF	CITATIONS
19	SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 2019, 37, 420-423.	17. 5	3,317
20	Detecting sequence signals in targeting peptides using deep learning. Life Science Alliance, 2019, 2, e201900429.	2.8	561
21	Structural and mutational analysis of the ribosome-arresting human XBP1u. ELife, 2019, 8, .	6.0	51
22	Membrane protein serendipity. Journal of Biological Chemistry, 2018, 293, 3470-3476.	3.4	2
23	Folding pathway of an Ig domain is conserved on and off the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11284-E11293.	7.1	86
24	Cotranslational Folding of a Pentarepeat \hat{I}^2 -Helix Protein. Journal of Molecular Biology, 2018, 430, 5196-5206.	4.2	25
25	Transmembrane but not soluble helices fold inside the ribosome tunnel. Nature Communications, 2018, 9, 5246.	12.8	36
26	Forces on Nascent Polypeptides during Membrane Insertion and Translocation via the Sec Translocon. Biophysical Journal, 2018, 115, 1885-1894.	0.5	30
27	Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9280-E9287.	7.1	59
28	Direct Detection of Membrane-Inserting Fragments Defines the Translocation Pores of a Family of Pathogenic Toxins. Journal of Molecular Biology, 2018, 430, 3190-3199.	4.2	4
29	Protein Evolution and Design. Annual Review of Biochemistry, 2018, 87, 101-103.	11.1	7
30	The shape of the bacterial ribosome exit tunnel affects cotranslational protein folding. ELife, 2018, 7, .	6.0	65
31	Cotranslational folding of spectrin domains via partially structured states. Nature Structural and Molecular Biology, 2017, 24, 221-225.	8.2	97
32	Transmembrane helices containing a charged arginine are thermodynamically stable. European Biophysics Journal, 2017, 46, 627-637.	2.2	21
33	Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants. Molecular Biology and Evolution, 2017, 34, 2041-2056.	8.9	20
34	Mutational analysis of protein folding inside the ribosome exit tunnel. FEBS Letters, 2017, 591, 155-163.	2.8	28
35	Stable membrane orientations of small dual-topology membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7987-7992.	7.1	33
36	The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling. ELife, 2017 , 6 , .	6.0	81

#	Article	IF	CITATIONS
37	Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide. ELife, 2017, 6, .	6.0	41
38	The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel. Biochemical Journal, 2016, 473, 4361-4372.	3.7	4
39	Biological insertion of computationally designed short transmembrane segments. Scientific Reports, 2016, 6, 23397.	3.3	18
40	Global profiling of SRP interaction with nascent polypeptides. Nature, 2016, 536, 219-223.	27.8	125
41	Hydrophobic Clusters Raise the Threshold Hydrophilicity for Insertion of Transmembrane Sequences in Vivo. Biochemistry, 2016, 55, 5772-5779.	2.5	4
42	Energetics of side-chain snorkeling in transmembrane helices probed by nonproteinogenic amino acids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10559-10564.	7.1	26
43	Coordinated disassembly of the divisome complex in <i>Escherichia coli</i> . Molecular Microbiology, 2016, 101, 425-438.	2.5	42
44	Small protein domains fold inside the ribosome exit tunnel. FEBS Letters, 2016, 590, 655-660.	2.8	69
45	Trigger Factor Reduces the Force Exerted on the Nascent Chain by a Cotranslationally Folding Protein. Journal of Molecular Biology, 2016, 428, 1356-1364.	4.2	74
46	Cotranslational Protein Folding. Biophysical Journal, 2016, 110, 4a.	0.5	0
47	RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nature Medicine, 2015, 21, 314-317.	30.7	166
48	Thermodynamics of Membrane Insertion and Refolding of the Diphtheria Toxin T-Domain. Journal of Membrane Biology, 2015, 248, 383-394.	2.1	14
49	Hydrophobic Blocks Facilitate Lipid Compatibility and Translocon Recognition of Transmembrane Protein Sequences. Biochemistry, 2015, 54, 1465-1473.	2.5	5
50	Tissue-based map of the human proteome. Science, 2015, 347, 1260419.	12.6	10,802
51	Charge-driven dynamics of nascent-chain movement through the SecYEG translocon. Nature Structural and Molecular Biology, 2015, 22, 145-149.	8.2	70
52	Exploration of the Arrest Peptide Sequence Space Reveals Arrest-enhanced Variants. Journal of Biological Chemistry, 2015, 290, 10208-10215.	3.4	54
53	Cotranslational Protein Folding inside the Ribosome Exit Tunnel. Cell Reports, 2015, 12, 1533-1540.	6.4	234
54	Differential repositioning of the second transmembrane helices from E. coli Tar and EnvZ upon moving the flanking aromatic residues. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 615-621.	2.6	7

#	Article	IF	CITATIONS
55	Forcing the Issue: Aromatic Tuning Facilitates Stimulus-Independent Modulation of a Two-Component Signaling Circuit. ACS Synthetic Biology, 2015, 4, 474-481.	3.8	9
56	Mechanisms of Integral Membrane Protein Insertion and Folding. Journal of Molecular Biology, 2015, 427, 999-1022.	4.2	292
57	The Code for Directing Proteins for Translocation across ER Membrane: SRP Cotranslationally Recognizes Specific Features of a Signal Sequence. Journal of Molecular Biology, 2015, 427, 1191-1201.	4.2	60
58	Identification of novel sphingolipid-binding motifs in mammalian membrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2066-2070.	2.6	49
59	Do Acidic Residues in TH8-TH9 Play a Role in Transmembrane Insertion of the Diphtheria Toxin T-Domain?. Biophysical Journal, 2014, 106, 716a-717a.	0.5	0
60	Weak pulling forces exerted on N _{in} â€orientated transmembrane segments during coâ€translational insertion into the inner membrane of <i>Escherichia coli</i> . FEBS Letters, 2014, 588, 1930-1934.	2.8	21
61	Why Have Small Multidrug Resistance Proteins Not Evolved into Fused, Internally Duplicated Structures?. Journal of Molecular Biology, 2014, 426, 2246-2254.	4.2	10
62	Inefficient SRP Interaction with a Nascent Chain Triggers a mRNA Quality Control Pathway. Cell, 2014, 156, 146-157.	28.9	77
63	Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion. Nature Communications, 2014, 5, 4863.	12.8	91
64	Disassembly of the divisome in <scp><i>E</i></scp> <i>scherichia coli</i> : evidence that <scp>FtsZ</scp> dissociates before compartmentalization. Molecular Microbiology, 2014, 92, 1-9.	2.5	70
65	Partitioning Charged Side Chains into Lipid Bilayer Membranes. Biophysical Journal, 2014, 106, 297a.	0.5	0
66	Large Tilts in Transmembrane Helices Can Be Induced during Tertiary Structure Formation. Journal of Molecular Biology, 2014, 426, 2529-2538.	4.2	5
67	GPCRs AND TRANSPORTERS: LIGANDS, COFACTORS, DRUG DEVELOPMENT. , 2014, , .		0
68	Positional editing of transmembrane domains during ion channel assembly. Journal of Cell Science, 2013, 126, 464-472.	2.0	9
69	In Vivo Trp Scanning of the Small Multidrug Resistance Protein EmrE Confirms 3D Structure Models'. Journal of Molecular Biology, 2013, 425, 4642-4651.	4.2	15
70	Quantitative Analysis of SecYEG-Mediated Insertion of Transmembrane α-Helices into the Bacterial Inner Membrane. Journal of Molecular Biology, 2013, 425, 2813-2822.	4.2	27
71	A short Câ€terminal tail prevents misâ€targeting of hydrophobic mitochondrial membrane proteins to the ER. FEBS Letters, 2013, 587, 3480-3486.	2.8	3
72	Improved production of membrane proteins in <i>Escherichia coli</i> by selective codon substitutions. FEBS Letters, 2013, 587, 2352-2358.	2.8	34

#	Article	IF	CITATIONS
73	Dislocation by the m-AAA Protease Increases the Threshold Hydrophobicity for Retention of Transmembrane Helices in the Inner Membrane of Yeast Mitochondria. Journal of Biological Chemistry, 2013, 288, 4792-4798.	3.4	13
74	Cotranslational folding of membrane proteins probed by arrest-peptide–mediated force measurements. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14640-14645.	7.1	79
75	Sequential Closure of the Cytoplasm and Then the Periplasm during Cell Division in Escherichia coli. Journal of Bacteriology, 2012, 194, 584-586.	2.2	10
76	A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nature Structural and Molecular Biology, 2012, 19, 1018-1022.	8.2	161
77	Efficient Glycosylphosphatidylinositol (GPI) Modification of Membrane Proteins Requires a C-terminal Anchoring Signal of Marginal Hydrophobicity. Journal of Biological Chemistry, 2012, 287, 16399-16409.	3.4	35
78	Antiparallel Dimers of the Small Multidrug Resistance Protein EmrE Are More Stable Than Parallel Dimers. Journal of Biological Chemistry, 2012, 287, 26052-26059.	3.4	39
79	Production of human tetraspanin proteins in Escherichia coli. Protein Expression and Purification, 2012, 82, 373-379.	1.3	7
80	Orientational Preferences of Neighboring Helices Can Drive ER Insertion of a Marginally Hydrophobic Transmembrane Helix. Molecular Cell, 2012, 45, 529-540.	9.7	52
81	Manipulating the genetic code for membrane protein production: What have we learnt so far?. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1091-1096.	2.6	24
82	Application of splitâ€green fluorescent protein for topology mapping membrane proteins in <i>Escherichia coli</i> . Protein Science, 2012, 21, 1571-1576.	7.6	9
83	Glycosylatable GFP as a compartment-specific membrane topology reporter. Biochemical and Biophysical Research Communications, 2012, 427, 780-784.	2.1	13
84	Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature, 2012, 481, 525-529.	27.8	330
85	Mapping out forces that act on transmembrane helices during membrane insertion. FASEB Journal, 2012, 26, 229.1.	0.5	0
86	Pre-Insertion Topology of Transmembrane Proteins is Highly Plastic and Can Be Controlled by a Single C-Terminal Residue. Biophysical Journal, 2011, 100, 345a-346a.	0.5	0
87	Introduction to Theme "Membrane Protein Folding and Insertion― Annual Review of Biochemistry, 2011, 80, 157-160.	11.1	18
88	SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 2011, 8, 785-786.	19.0	8,521
89	Converting a Marginally Hydrophobic Soluble Protein into a Membrane Protein. Journal of Molecular Biology, 2011, 407, 171-179.	4.2	5
90	TIM23-mediated insertion of transmembrane \hat{l}_{\pm} -helices into the mitochondrial inner membrane. EMBO Journal, 2011, 30, 1003-1011.	7.8	42

#	Article	IF	CITATIONS
91	Charged flanking residues control the efficiency of membrane insertion of the first transmembrane segment in yeast mitochondrial Mgm1p. FEBS Letters, 2011, 585, 1238-1242.	2.8	7
92	Arginine in Membranes: The Connection Between Molecular Dynamics Simulations and Translocon-Mediated Insertion Experiments. Journal of Membrane Biology, 2011, 239, 35-48.	2.1	104
93	Membrane proteins: from bench to bits. Biochemical Society Transactions, 2011, 39, 747-750.	3.4	13
94	Flanking Residues Help Determine Whether a Hydrophobic Segment Adopts a Monotopic or Bitopic Topology in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2011, 286, 25284-25290.	3.4	17
95	Apolar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E359-E364.	7.1	52
96	Prediction of the human membrane proteome. Proteomics, 2010, 10, 1141-1149.	2.2	347
97	Estimating Zâ€ring radius and contraction in dividing <i>Escherichia coli</i> . Molecular Microbiology, 2010, 76, 151-158.	2.5	6
98	Disulfide Bond Formation and Cysteine Exclusion in Gram-positive Bacteria. Journal of Biological Chemistry, 2010, 285, 3300-3309.	3.4	80
99	Functionality of the voltage-gated proton channel truncated in S4. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2313-2318.	7.1	48
100	Membrane Topology of S4 of the Mouse Voltage-Gated Proton Channel. Biophysical Journal, 2010, 98, 539a.	0.5	0
101	Membrane Insertion of Marginally Hydrophobic Transmembrane Helices Depends on Sequence Context. Journal of Molecular Biology, 2010, 396, 221-229.	4.2	82
102	Repositioning of Transmembrane \hat{l}_{\pm} -Helices during Membrane Protein Folding. Journal of Molecular Biology, 2010, 397, 190-201.	4.2	59
103	Control of Membrane Protein Topology by a Single C-Terminal Residue. Science, 2010, 328, 1698-1700.	12.6	128
104	Insertion of short transmembrane helices by the Sec61 translocon. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11588-11593.	7.1	76
105	Prediction of partial membrane protein topologies using a consensus approach. Protein Science, 2009, 11, 2974-2980.	7.6	35
106	LumenP-A neural network predictor for protein localization in the thylakoid lumen. Protein Science, 2009, 12, 2360-2366.	7.6	31
107	Improved detection of homologous membrane proteins by inclusion of information from topology predictions. Protein Science, 2009, 11, 652-658.	7.6	23
108	Bioinformatics of Myelin Membrane Proteins., 2009,, 35-53.		1

#	Article	IF	Citations
109	Analysis of Transmembrane Helix Integration in the Endoplasmic Reticulum in S. cerevisiae. Journal of Molecular Biology, 2009, 386, 1222-1228.	4.2	29
110	Membrane-integration Characteristics of Two ABC Transporters, CFTR and P-glycoprotein. Journal of Molecular Biology, 2009, 387, 1153-1164.	4.2	49
111	Sequence-based feature prediction and annotation of proteins. Genome Biology, 2009, 10, 206.	9.6	53
112	GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nature Protocols, 2008, 3, 784-798.	12.0	289
113	Membranes: reading between the lines. Current Opinion in Structural Biology, 2008, 18, 403-405.	5.7	11
114	Confronting Fusion Protein-Based Membrane Protein Topology Mapping with Reality: The Escherichia coli ClcA H+/Clâ° Exchange Transporter. Journal of Molecular Biology, 2008, 381, 860-866.	4.2	17
115	How Translocons Select Transmembrane Helices. Annual Review of Biophysics, 2008, 37, 23-42.	10.0	176
116	Prediction of membrane-protein topology from first principles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7177-7181.	7.1	288
117	Molecular code for protein insertion in the endoplasmic reticulum membrane is similar for N ⟨sub⟩in⟨ sub⟩ â€"C ⟨sub⟩out⟨ sub⟩ and N ⟨sub⟩out⟨ sub⟩ â€"C ⟨sub⟩in⟨ sub⟩ transmembrane helices. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15702-15707.	7.1	69
118	Contribution of positively charged flanking residues to the insertion of transmembrane helices into the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4127-4132.	7.1	60
119	Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8263-8268.	7.1	64
120	Formation of Transmembrane Helices In Vivoâ€"Is Hydrophobicity All that Matters?. Journal of General Physiology, 2007, 129, 353-356.	1.9	33
121	Emulating Membrane Protein Evolution by Rational Design. Science, 2007, 315, 1282-1284.	12.6	116
122	Membrane protein structural biology – How far can the bugs take us? (Review). Molecular Membrane Biology, 2007, 24, 329-332.	2.0	37
123	Features of Transmembrane Segments That Promote the Lateral Release from the Translocase into the Lipid Phase. Biochemistry, 2007, 46, 15153-15161.	2.5	46
124	Membrane Protein Structure: Prediction versus Reality. Annual Review of Biochemistry, 2007, 76, 125-140.	11.1	220
125	Assembly of the Cytochrome bo3 Complex. Journal of Molecular Biology, 2007, 371, 765-773.	4.2	47
126	Stable insertion of Alzheimer $\hat{Al^2}$ peptide into the ER membrane strongly correlates with its length. FEBS Letters, 2007, 581, 3809-3813.	2.8	5

#	Article	IF	Citations
127	Membrane topology of the <i>Drosophila</i> OR83b odorant receptor. FEBS Letters, 2007, 581, 5601-5604.	2.8	194
128	High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in <i>Saccharomyces cerevisiae</i> the United States of America, 2007, 104, 13936-13941.	7.1	214
129	Membrane proteins up for grabs. Nature Biotechnology, 2007, 25, 646-647.	17.5	3
130	Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols, 2007, 2, 953-971.	12.0	2,940
131	Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature, 2007, 450, 1026-1030.	27.8	644
132	The membrane protein universe: what's out there and why bother?. Journal of Internal Medicine, 2007, 261, 543-557.	6.0	177
133	Formation of Transmembrane Helices In Vivoâ€"Is Hydrophobicity All that Matters?. Journal of Cell Biology, 2007, 177, i9-i9.	5.2	0
134	New Escherichia coli outer membrane proteins identified through prediction and experimental verification. Protein Science, 2006, 15, 884-889.	7.6	43
135	Membrane topology of the human seipin protein. FEBS Letters, 2006, 580, 2281-2284.	2.8	105
136	Lipid Bilayers, Translocons and the Shaping of Polypeptide Structure. , 2006, , 1-25.		1
137	Membrane-protein topology. Nature Reviews Molecular Cell Biology, 2006, 7, 909-918.	37.0	450
138	Identification and evolution of dual-topology membrane proteins. Nature Structural and Molecular Biology, 2006, 13, 112-116.	8.2	189
139	Asn†and Aspâ€mediated interactions between transmembrane helices during transloconâ€mediated membrane protein assembly. EMBO Reports, 2006, 7, 1111-1116.	4.5	65
140	Membranes. Current Opinion in Structural Biology, 2006, 16, 431.	5.7	2
141	PONGO: a web server for multiple predictions of all-alpha transmembrane proteins. Nucleic Acids Research, 2006, 34, W169-W172.	14.5	37
142	Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11148-11153.	7.1	36
143	The Use of Phylogenetic Profiles for Gene Predictions Revisited. Current Genomics, 2006, 7, 79-86.	1.6	1
144	A global topology map of the Saccharomyces cerevisiae membrane proteome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11142-11147.	7.1	124

#	Article	IF	CITATIONS
145	Somatic Acquisition and Signaling of <emph type="ITAL">TGFBR1</emph> *6A in Cancer. JAMA - Journal of the American Medical Association, 2005, 294, 1634.	7.4	87
146	Improved membrane protein topology prediction by domain assignments. Protein Science, 2005, 14, 1723-1728.	7.6	40
147	Global Topology Analysis of the <i>Escherichia coli</i> li>Inner Membrane Proteome. Science, 2005, 308, 1321-1323.	12.6	455
148	Helices on the move. Nature Structural and Molecular Biology, 2005, 12, 834-835.	8.2	2
149	Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nature Cell Biology, 2005, 7, 1224-1231.	10.3	333
150	Research Networks: BioSapiens: a European network for integrated genome annotation. European Journal of Human Genetics, 2005, 13, 994-997.	2.8	8
151	Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature, 2005, 433, 377-381.	27.8	888
152	Transmembrane helices before, during, and after insertion. Current Opinion in Structural Biology, 2005, 15, 378-386.	5.7	122
153	Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes. Proteins: Structure, Function and Bioinformatics, 2005, 60, 606-616.	2.6	108
154	MICROBIOLOGY: Enhanced: Translocation of Anthrax Toxin: Lord of the Rings. Science, 2005, 309, 709-710.	12.6	5
155	Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research, 2005, 15, 1325-1335.	5.5	367
156	Membrane Topology of the STT3 Subunit of the Oligosaccharyl Transferase Complex*. Journal of Biological Chemistry, 2005, 280, 20261-20267.	3.4	30
157	Interface connections of a transmembrane voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15059-15064.	7.1	208
158	Mapping the Interaction of the STT3 Subunit of the Oligosaccharyl Transferase Complex with Nascent Polypeptide Chains. Journal of Biological Chemistry, 2005, 280, 40489-40493.	3.4	25
159	Protein Complexes of the Escherichia coli Cell Envelope*. Journal of Biological Chemistry, 2005, 280, 34409-34419.	3.4	183
160	Membrane Topology Mapping of Vitamin K Epoxide Reductase by in Vitro Translation/Cotranslocation. Journal of Biological Chemistry, 2005, 280, 16410-16416.	3.4	87
161	A Study of the Membrane–Water Interface Region of Membrane Proteins. Journal of Molecular Biology, 2005, 346, 377-385.	4.2	140
162	Experimentally Constrained Topology Models for 51,208 Bacterial Inner Membrane Proteins. Journal of Molecular Biology, 2005, 352, 489-494.	4.2	51

#	Article	IF	Citations
163	Molecular Mechanisms in Biological Processes. FEBS Letters, 2005, 579, 851-851.	2.8	1
164	Human neuropeptide Y signal peptide gain-of-function polymorphism is associated with increased body mass index: possible mode of function. Regulatory Peptides, 2005, 127, 45-53.	1.9	71
165	BIOGENESIS OF INNER MEMBRANE PROTEINS IN <i>ESCHERICHIA COLI</i> . Annual Review of Microbiology, 2005, 59, 329-355.	7.3	177
166	Membrane Insertion of a Potassium-Channel Voltage Sensor. Science, 2005, 307, 1427-1427.	12.6	171
167	A Nine-transmembrane Domain Topology for Presenilin 1. Journal of Biological Chemistry, 2005, 280, 35352-35360.	3.4	162
168	Determination of N- and C-terminal Borders of the Transmembrane Domain of Integrin Subunits. Journal of Biological Chemistry, 2004, 279, 21200-21205.	3.4	50
169	Competition between neighboring topogenic signals during membrane protein insertion into the ER. FEBS Journal, 2004, 272, 28-36.	4.7	20
170	The machinery of membrane protein assembly. Current Opinion in Structural Biology, 2004, 14, 397-404.	5.7	121
171	Experimentally based topology models for <i>E. coli</i> inner membrane proteins. Protein Science, 2004, 13, 937-945.	7.6	90
172	Feature-based prediction of non-classical and leaderless protein secretion. Protein Engineering, Design and Selection, 2004, 17, 349-356.	2.1	1,089
173	The Dominant white, Dun and Smoky Color Variants in Chicken Are Associated With Insertion/Deletion Polymorphisms in the PMEL17 GeneSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY636124, AY636125, AY636126, AY636127, AY636128, AY636129 Genetics, 2004, 168, 1507-1518.	2.9	209
174	Improved Prediction of Signal Peptides: SignalP 3.0. Journal of Molecular Biology, 2004, 340, 783-795.	4.2	6,015
175	Stopâ€transfer efficiency of marginally hydrophobic segments depends on the length of the carboxyâ€terminal tail. EMBO Reports, 2003, 4, 178-183.	4.5	14
176	Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Science, 2003, 12, 1652-1662.	7.6	1,016
177	Inter-helical Hydrogen Bond Formation During Membrane Protein Integration into the ER Membrane. Journal of Molecular Biology, 2003, 334, 803-809.	4.2	39
178	Reliability Measures for Membrane Protein Topology Prediction Algorithms. Journal of Molecular Biology, 2003, 327, 735-744.	4.2	190
179	In Silico Prediction of the Peroxisomal Proteome in Fungi, Plants and Animals. Journal of Molecular Biology, 2003, 330, 443-456.	4.2	103
180	Membrane Proteins: Structure, Function and Assembly. FEBS Letters, 2003, 555, 1-1.	2.8	0

#	Article	IF	Citations
181	Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex. Journal of Cell Biology, 2003, 161, 715-725.	5.2	124
182	Determination of the membrane topology of Ost4p and its subunit interactions in the oligosaccharyltransferase complex in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7460-7464.	7.1	46
183	Topology of the Membrane-Associated Hepatitis C Virus Protein NS4B. Journal of Virology, 2003, 77, 5428-5438.	3.4	175
184	Membrane Assembly of the Cannabinoid Receptor 1: Impact of a Long N-Terminal Tail. Molecular Pharmacology, 2003, 64, 570-577.	2.3	112
185	How Hydrophobic Is Alanine?. Journal of Biological Chemistry, 2003, 278, 29389-29393.	3.4	30
186	Topology Models for 37 Saccharomyces cerevisiaeMembrane Proteins Based on C-terminal Reporter Fusions and Predictions. Journal of Biological Chemistry, 2003, 278, 10208-10213.	3.4	58
187	Membrane protein assembly in vivo. Advances in Protein Chemistry, 2003, 63, 1-18.	4.4	12
188	Rapid topology mapping of <i>Escherichia coli</i> inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2690-2695.	7.1	185
189	Insertion and Topology of a Plant Viral Movement Protein in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2002, 277, 23447-23452.	3.4	53
190	Effect of acute hyperketonemia on the cerebral uptake of ketone bodies in nondiabetic subjects and IDDM patients. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E20-E28.	3.5	47
191	Central Functions of the Lumenal and Peripheral Thylakoid Proteome of Arabidopsis Determined by Experimentation and Genome-Wide Prediction. Plant Cell, 2002, 14, 211-236.	6.6	439
192	Targeting Sequences., 2002,, 35-46.		3
193	Cleavage of a tail-anchored protein by signal peptidase. FEBS Letters, 2002, 516, 106-108.	2.8	24
194	Membrane proteins: shaping up. Trends in Biochemical Sciences, 2002, 27, 231-234.	7.5	18
195	Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen. Journal of Molecular Biology, 2001, 305, 567-580.	4.2	11,404
196	Formation of helical hairpins during membrane protein integration into the endoplasmic reticulum membrane. Role of the N and C-terminal flanking regions 1 1Edited by F. Cohen. Journal of Molecular Biology, 2001, 313, 1171-1179.	4.2	17
197	Effects of â€~hydrophobic mismatch' on the location of transmembrane helices in the ER membrane. FEBS Letters, 2001, 496, 96-100.	2.8	20
198	Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli. FEBS Letters, 2001, 507, 220-224.	2.8	210

#	Article	lF	Citations
199	Prediction of organellar targeting signals. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1541, 114-119.	4.1	168
200	The Internal Repeats in the Na+/Ca2+Exchanger-related Escherichia coli Protein YrbG Have Opposite Membrane Topologies. Journal of Biological Chemistry, 2001, 276, 18905-18907.	3.4	46
201	Chapter 10 Analysis and prediction of mitochondrial targeting peptides. Methods in Cell Biology, 2001, 65, 175-187.	1.1	40
202	Inhibition of Protein Translocation across the Endoplasmic Reticulum Membrane by Sterols. Journal of Biological Chemistry, 2001, 276, 41748-41754.	3.4	63
203	Different conformations of nascent polypeptides during translocation across the ER membrane. BMC Cell Biology, 2000, 1, 3.	3.0	79
204	How proteins adapt to a membrane–water interface. Trends in Biochemical Sciences, 2000, 25, 429-434.	7.5	636
205	YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO Journal, 2000, 19, 542-549.	7.8	357
206	Glycosylation Efficiency of Asn-Xaa-Thr Sequons Depends Both on the Distance from the C Terminus and on the Presence of a Downstream Transmembrane Segment. Journal of Biological Chemistry, 2000, 275, 17338-17343.	3.4	66
207	Distant Downstream Sequence Determinants Can Control N-tail Translocation during Protein Insertion into the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2000, 275, 6207-6213.	3.4	35
208	Determinants of Topogenesis and Glycosylation of Type II Membrane Proteins. Journal of Biological Chemistry, 2000, 275, 29011-29022.	3.4	16
209	Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence. Journal of Molecular Biology, 2000, 300, 1005-1016.	4.2	4,166
210	Formation of cytoplasmic turns between two closely spaced transmembrane helices during membrane protein integration into the ER membrane 1 1Edited by F. Cohen. Journal of Molecular Biology, 2000, 301, 191-197.	4.2	11
211	Charge pair interactions in a model transmembrane helix in the ER membrane. Journal of Molecular Biology, 2000, 303, 1-5.	4.2	32
212	Consensus predictions of membrane protein topology. FEBS Letters, 2000, 486, 267-269.	2.8	91
213	Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Engineering, Design and Selection, 1999, 12, 3-9.	2.1	546
214	The Signal Recognition Particle-targeting Pathway Does Not Necessarily Deliver Proteins to the Sec-translocase in Escherichia coli. Journal of Biological Chemistry, 1999, 274, 20068-20070.	3.4	37
215	Insertion of a Bacterial Secondary Transport Protein in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 1999, 274, 2816-2823.	3.4	28
216	Determination of the Border between the Transmembrane and Cytoplasmic Domains of Human Integrin Subunits. Journal of Biological Chemistry, 1999, 274, 37030-37034.	3.4	71

#	Article	IF	Citations
217	ChloroP, a neural networkâ€based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science, 1999, 8, 978-984.	7.6	1,778
218	Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO Journal, 1999, 18, 2982-2990.	7.8	249
219	N-Tail translocation in a eukaryotic polytopic membrane protein. Synergy between neighboring transmembrane segments. FEBS Journal, 1999, 263, 264-269.	0.2	27
220	Topology, Subcellular Localization, and Sequence Diversity of the Mlo Family in Plants. Journal of Biological Chemistry, 1999, 274, 34993-35004.	3.4	261
221	The Aromatic Residues Trp and Phe Have Different Effects on the Positioning of a Transmembrane Helix in the Microsomal Membrane. Biochemistry, 1999, 38, 9778-9782.	2.5	137
222	A turn propensity scale for transmembrane helices. Journal of Molecular Biology, 1999, 288, 141-145.	4.2	92
223	A day in the life of Dr K. or how I learned to stop worrying and love lysozyme: a tragedy in six acts. Journal of Molecular Biology, 1999, 293, 367-379.	4.2	35
224	Turns in transmembrane helices: determination of the minimal length of a "helical hairpin―and derivation of a fine-grained turn propensity scale 1 1Edited by F. E. Cohen. Journal of Molecular Biology, 1999, 293, 807-814.	4.2	95
225	Recent advances in the understanding of membrane protein assembly and structure. Quarterly Reviews of Biophysics, 1999, 32, 285-307.	5.7	101
226	Life and death of a signal peptide. Nature, 1998, 396, 111-113.	27.8	105
227	Stop-transfer function of pseudo-random amino acid segments during translocation across prokaryotic and eukaryotic membranes. FEBS Journal, 1998, 251, 821-829.	0.2	52
228	Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides., 1998, 30, 49-60.		98
229	Genomeâ€wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Science, 1998, 7, 1029-1038.	7.6	1,329
230	Architecture of βâ€barrel membrane proteins: Analysis of trimeric porins. Protein Science, 1998, 7, 2026-2032.	7.6	46
231	Forced Transmembrane Orientation of Hydrophilic Polypeptide Segments in Multispanning Membrane Proteins. Molecular Cell, 1998, 2, 495-503.	9.7	104
232	Phosphatidylethanolamine mediates insertion of the catalytic domain of leader peptidase in membranes. FEBS Letters, 1998, 431, 75-79.	2.8	49
233	Proline-induced disruption of a transmembrane \hat{l}_{\pm} -helix in its natural environment. Journal of Molecular Biology, 1998, 284, 1165-1175.	4.2	134
234	Positively and negatively charged residues have different effects on the position in the membrane of a model transmembrane helix. Journal of Molecular Biology, 1998, 284, 1177-1183.	4.2	101

#	Article	IF	CITATIONS
235	Breaking the camel's back: proline-induced turns in a model transmembrane helix. Journal of Molecular Biology, 1998, 284, 1185-1189.	4.2	54
236	Membrane Topology of the 60-kDa Oxa1p Homologue fromEscherichia coli. Journal of Biological Chemistry, 1998, 273, 30415-30418.	3.4	86
237	Featureâ€extraction from endopeptidase cleavage sites in mitochondrial targeting peptides. Proteins: Structure, Function and Bioinformatics, 1998, 30, 49-60.	2.6	2
238	Alanine Insertion Scanning Mutagenesis of Lactose Permease Transmembrane Helices. Journal of Biological Chemistry, 1997, 272, 29566-29571.	3.4	35
239	Topological Rules for Membrane Protein Assembly in Eukaryotic Cells. Journal of Biological Chemistry, 1997, 272, 6119-6127.	3.4	136
240	A Neural Network Method for Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites. International Journal of Neural Systems, 1997, 08, 581-599.	5.2	645
241	Helix-helix packing in a membrane-like environment. Journal of Molecular Biology, 1997, 272, 633-641.	4.2	40
242	Prediction of N-terminal protein sorting signals. Current Opinion in Structural Biology, 1997, 7, 394-398.	5.7	122
243	Molecular Mechanism of Membrane Protein Integration into the Endoplasmic Reticulum. Cell, 1997, 89, 523-533.	28.9	185
244	TheE. coliSRP: preferences of a targeting factor. FEBS Letters, 1997, 408, 1-4.	2.8	60
244	TheE. coliSRP: preferences of a targeting factor. FEBS Letters, 1997, 408, 1-4. In vitro membrane integration of leader peptidase depends on the Sec machinery and anionic phospholipids and can occur post-translationally. FEBS Letters, 1997, 413, 109-114.	2.8	60
	In vitro membrane integration of leader peptidase depends on the Sec machinery and anionic		
245	In vitro membrane integration of leader peptidase depends on the Sec machinery and anionic phospholipids and can occur post-translationally. FEBS Letters, 1997, 413, 109-114. Architecture of helix bundle membrane proteins: An analysis of cytochrome c oxidase from bovine	2.8	23
245 246	In vitro membrane integration of leader peptidase depends on the Sec machinery and anionic phospholipids and can occur post-translationally. FEBS Letters, 1997, 413, 109-114. Architecture of helix bundle membrane proteins: An analysis of cytochrome c oxidase from bovine mitochondria. Protein Science, 1997, 6, 808-815. Getting greasy: how transmembrane polypeptide segments integrate into the lipid bilayer. Molecular	2.8	23 134
245 246 247	In vitro membrane integration of leader peptidase depends on the Sec machinery and anionic phospholipids and can occur post-translationally. FEBS Letters, 1997, 413, 109-114. Architecture of helix bundle membrane proteins: An analysis of cytochrome c oxidase from bovine mitochondria. Protein Science, 1997, 6, 808-815. Getting greasy: how transmembrane polypeptide segments integrate into the lipid bilayer. Molecular Microbiology, 1997, 24, 249-253. Nascent membrane and presecretory proteins synthesized in <i>Escherichia coli</i>	2.8 7.6 2.5	23 134 33
245 246 247 248	In vitro membrane integration of leader peptidase depends on the Sec machinery and anionic phospholipids and can occur post-translationally. FEBS Letters, 1997, 413, 109-114. Architecture of helix bundle membrane proteins: An analysis of cytochrome c oxidase from bovine mitochondria. Protein Science, 1997, 6, 808-815. Getting greasy: how transmembrane polypeptide segments integrate into the lipid bilayer. Molecular Microbiology, 1997, 24, 249-253. Nascent membrane and presecretory proteins synthesized in <i>Escherichia coli</i> i>Escherichia coli j> 33-64. Expression of an Olfactory Receptor in Escherichia coli â Purification, Reconstitution, and Ligand	2.8 7.6 2.5	23 134 33 168
245 246 247 248	In vitro membrane integration of leader peptidase depends on the Sec machinery and anionic phospholipids and can occur post-translationally. FEBS Letters, 1997, 413, 109-114. Architecture of helix bundle membrane proteins: An analysis of cytochrome c oxidase from bovine mitochondria. Protein Science, 1997, 6, 808-815. Getting greasy: how transmembrane polypeptide segments integrate into the lipid bilayer. Molecular Microbiology, 1997, 24, 249-253. Nascent membrane and presecretory proteins synthesized in ⟨i⟩Escherichia coli⟨li⟩ associate with signal recognition particle and trigger factor. Molecular Microbiology, 1997, 25, 53-64. Expression of an Olfactory Receptor inEscherichiacoli: Purification, Reconstitution, and Ligand Bindingâ€. Biochemistry, 1996, 35, 16077-16084. ⟨i⟩Saccharomyces cerevisiae⟨ i⟩ mitochondria lack a bacterialâ€type Sec machinery. Protein Science,	2.8 7.6 2.5 2.5	23 134 33 168

#	Article	IF	Citations
253	A Nascent Secretory Protein 5 Traverse the Ribosome/Endoplasmic Reticulum Translocase Complex as an Extended Chain. Journal of Biological Chemistry, 1996, 271, 6241-6244.	3.4	133
254	Targeting Signals for Protein Import into Mitochondria and Other Subcellular Organelles. Advances in Molecular and Cell Biology, 1996, 17, 1-12.	0.1	4
255	Principles of membrane protein assembly and structure. Progress in Biophysics and Molecular Biology, 1996, 66, 113-139.	2.9	84
256	Defining a similarity threshold for a functional protein sequence pattern: The signal peptide cleavage site., 1996, 24, 165-177.		75
257	Alaâ€insertion scanning mutagenesis of the glycophorin a transmembrane helix: A rapid way to map helixâ€helix interactions in integral membrane proteins. Protein Science, 1996, 5, 1339-1341.	7.6	71
258	Turning yeast sequence into protein function. Nature Biotechnology, 1996, 14, 429-429.	17.5	3
259	Membrane Topology of Kch, a Putative K+ Channel from Escherichia coli. Journal of Biological Chemistry, 1996, 271, 25912-25915.	3.4	17
260	A 12-Residue-long Polyleucine Tail Is Sufficient to Anchor Synaptobrevin to the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 1996, 271, 7583-7586.	3.4	70
261	Computer-Assisted Identification of Protein Sorting Signals and Prediction of Membrane Protein Topology and Structure., 1996,, 1-14.		1
262	SecA-dependence of the translocation of a large periplasmic loop in the <i>Escherichia coli </i> MalF inner membrane protein is a function of sequence context. Molecular Membrane Biology, 1995, 12, 209-215.	2.0	24
263	Membrane protein assembly. Advances in Cellular and Molecular Biology of Membranes and Organelles, 1995, , 1-16.	0.3	0
264	Membrane protein topogenesis in Escherichia coli. Membrane Protein Transport, 1995, 2, 201-214.	0.2	0
265	Directionality in protein translocation across membranes: the N-tail phenomenon. Trends in Cell Biology, 1995, 5, 380-383.	7.9	53
266	Membrane protein assembly: Rules of the game. BioEssays, 1995, 17, 25-30.	2.5	50
267	SecA-independent Translocation of the Periplasmic N-terminal Tail of an Escherichia coli Inner Membrane Protein. Journal of Biological Chemistry, 1995, 270, 29831-29835.	3.4	23
268	A quantitative assay to determine the amount of Signal Peptidase I in <i>E. coli</i> and the orientation of membrane vesicles. Molecular Membrane Biology, 1995, 12, 349-353.	2.0	16
269	Properties of N-terminal tails in G-protein coupled receptors: a statistical study. Protein Engineering, Design and Selection, 1995, 8, 693-698.	2.1	101
270	The COOH-terminal ends of internal signal and signal-anchor sequences are positioned differently in the ER translocase Journal of Cell Biology, 1994, 126, 1127-1132.	5.2	132

#	Article	IF	Citations
271	A receptor component of the chloroplast protein translocation machinery. Science, 1994, 266, 1989-1992.	12.6	234
272	De novo design of integral membrane proteins. Nature Structural and Molecular Biology, 1994, 1, 858-862.	8.2	40
273	Topological ?frustration? in multispanning E. coli inner membrane proteins. Cell, 1994, 77, 401-412.	28.9	166
274	Sec-independent protein insertion into the innerE. colimembrane A phenomenon in search of an explanation. FEBS Letters, 1994, 346, 69-72.	2.8	37
275	Positively charged residues influence the degree of SecA dependence in protein translocation across the E. coliinner membrane. FEBS Letters, 1994, 347, 169-172.	2.8	19
276	Membrane Proteins: From Sequence to Structure. Annual Review of Biophysics and Biomolecular Structure, 1994, 23, 167-192.	18.3	287
277	TopPred II: an improved software for membrane protein structure predictions. Bioinformatics, 1994, 10, 685-686.	4.1	627
278	Decoding the Signals of Membrane Protein Sequences. , 1994, , 27-40.		7
279	Signals for Protein Targeting into and across Membranes. Sub-Cellular Biochemistry, 1994, 22, 1-19.	2.4	37
280	Assembly of Integral Membrane Proteins. , 1994, , 199-205.		0
281	Positively charged amino acids placed next to a signal sequence block protein translocation more efficiently in Escherichia coli than in mammalian microsomes. Molecular Genetics and Genomics, 1993, 239, 251-256.	2.4	64
282	Predicting the topology of eukaryotic membrane proteins. FEBS Journal, 1993, 213, 1333-1340.	0.2	252
283	The DsbA-DsbB system affects the formation of disulfide bonds in periplasmic but not in intramembraneous protein domains. FEBS Letters, 1993, 332, 49-51.	2.8	14
284	Differentsec-requirements for signal peptide cleavage and protein translocation in a modelE. coliprotein. FEBS Letters, 1993, 318, 7-10.	2.8	7
285	Three-dimensional model for the membrane domain of Escherichia coli leader peptidase based on disulfide mapping. Biochemistry, 1993, 32, 8534-8539.	2.5	54
286	Targeting Signals and Mechanisms of Protein Insertion into Membranes., 1993,, 175-182.		0
287	Chapter 7 Sequence determinants of membrane protein topology. New Comprehensive Biochemistry, 1992, 22, 75-84.	0.1	1
288	Signal peptidases in prokaryotes and eukaryotes - a new protease family. Trends in Biochemical Sciences, 1992, 17, 474-478.	7.5	195

#	Article	IF	CITATIONS
289	A signal peptide with a proline next to the cleavage site inhibits leader peptidase when present in asec-independent protein. FEBS Letters, 1992, 299, 243-246.	2.8	61
290	Membrane protein structure prediction. Journal of Molecular Biology, 1992, 225, 487-494.	4.2	1,619
291	The distribution of charged amino acids in mitochondrial inner-membrane proteins suggests different modes of membrane integration for nuclearly and rnitochondrially encoded proteins. FEBS Journal, 1992, 205, 1207-1215.	0.2	66
292	Transport of Proteins into Chloroplasts. Plant Gene Research, 1992, , 353-370.	0.4	6
293	Assembly of Escherichia Coli Inner Membrane Proteins: Sec-Dependent and Sec-Independent Membrane Insertion. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1992, , 449-455.	0.2	0
294	Sequence Determinants for Protein Import into Chloroplasts and Thylakoid Membrane Protein Assembly., 1992,, 195-199.		0
295	Chloroplast transit peptides the perfect random coil?. FEBS Letters, 1991, 278, 1-3.	2.8	206
296	The †positive-inside rule†applies to thylakoid membrane proteins. FEBS Letters, 1991, 282, 41-46.	2.8	90
297	Proline kinks in transmembrane α-helices. Journal of Molecular Biology, 1991, 218, 499-503.	4.2	314
298	CHLPEPâ€"A database of chloroplast transit peptides. Plant Molecular Biology Reporter, 1991, 9, 104-126.	1.8	41
299	Computer analysis of DNA and protein sequences. FEBS Journal, 1991, 199, 253-256.	0.2	31
300	A 30-residue-long "export initiation domain" adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 9751-9754.	7.1	93
301	Signals for Protein Import into Organelles. , 1991, , 583-593.		3
302	Cleavage-Sites in Protein Targeting Signals. , 1991, , 231-238.		1
303	Computer analysis of DNA and protein sequences. , 1991, , 85-88.		0
304	The signal peptide. Journal of Membrane Biology, 1990, 115, 195-201.	2.1	1,024
305	Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Engineering, Design and Selection, 1990, 3, 433-442.	2.1	674
306	Protein targeting signals. Current Opinion in Cell Biology, 1990, 2, 604-608.	5.4	104

#	Article	IF	CITATIONS
307	Fine-tuning the topology of a polytopic membrane protein: Role of positively and negatively charged amino acids. Cell, 1990, 62, 1135-1141.	28.9	225
308	Membrane proteins: from sequence to structure. Protein Engineering, Design and Selection, 1990, 4, 109-112.	2.1	105
309	Cleavage-site motifs in mitochondrial targeting peptides. Protein Engineering, Design and Selection, 1990, 4, 33-37.	2.1	311
310	Chloroplast transit peptides from the green algaChlamydomonas reinhardtiishare features with both mitochondrial and higher plant chloroplast presequences. FEBS Letters, 1990, 260, 165-168.	2.8	160
311	A conserved cleavage-site motif in chloroplast transit peptides. FEBS Letters, 1990, 261, 455-458.	2.8	345
312	Structure of Targeting Peptides for Organellar Protein Import. , 1990, , 2559-2566.		0
313	Domain structure of mitochondrial and chloroplast targeting peptides. FEBS Journal, 1989, 180, 535-545.	0.2	1,101
314	In sequence. Nature, 1989, 341, 353-353.	27.8	1
315	Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature, 1989, 341, 456-458.	27.8	558
316	The structure of signal peptides from bacterial lipoproteins. Protein Engineering, Design and Selection, 1989, 2, 531-534.	2.1	264
317	Speciesâ€specific variation in signal peptide design Implications for protein secretion in foreign hosts. FEBS Letters, 1989, 244, 439-446.	2.8	247
318	Topogenic signals in integral membrane proteins. FEBS Journal, 1988, 174, 671-678.	0.2	674
319	Getting sense out of sequence data. Nature, 1988, 333, 605-607.	27.8	12
320	Transcending the impenetrable: How proteins come to terms with membranes. BBA - Biomembranes, 1988, 947, 307-333.	8.0	453
321	Mitochondrial targeting sequences why â€~non-amphiphilic' peptides may still be amphiphilic. FEBS Letters, 1988, 235, 173-177.	2.8	50
322	Sequence Determinants of Protein Sorting Into and Across Membranes., 1988,, 307-322.		1
323	The leader peptides from bacteriorhodopsin and halorhodopsin are potential membrane-spanning amphipathic helices. FEBS Letters, 1987, 213, 238-240.	2.8	22
324	Homology to region X from staphylococcal protein A is not unique to cell surface proteins. Journal of Theoretical Biology, 1987, 127, 373-376.	1.7	6

#	Article	IF	CITATIONS
325	Theoretical modelling of protein synthesis. Journal of Theoretical Biology, 1987, 125, 1-14.	1.7	18
326	Translation rate modification by preferential codon usage: Intragenic position effects. Journal of Theoretical Biology, 1987, 124, 43-55.	1.7	87
327	Why mitochondria need a genome. FEBS Letters, 1986, 198, 1-4.	2.8	154
328	Net N-C charge imbalance may be important for signal sequence function in bacteria. Journal of Molecular Biology, 1986, 192, 287-290.	4.2	172
329	Towards a comparative anatomy of N-terminal topogenic protein sequences. Journal of Molecular Biology, 1986, 189, 239-242.	4.2	139
330	The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO Journal, 1986, 5, 3021-3027.	7.8	770
331	Sequence determinants of cytosolic N-terminal protein processing. FEBS Journal, 1986, 154, 193-196.	0.2	297
332	A new method for predicting signal sequence cleavage sites. Nucleic Acids Research, 1986, 14, 4683-4690.	14.5	4,858
333	Chapter 4 Structural and Thermodynamic Aspects of the Transfer of Proteins into and across Membranes. Current Topics in Membranes and Transport, 1985, , 151-179.	0.6	86
334	Structures of N-terminally acetylated proteins. FEBS Journal, 1985, 152, 523-527.	0.2	184
335	Signal sequences. Journal of Molecular Biology, 1985, 184, 99-105.	4.2	2,249
336	Ribosome - SRP - signal sequence interactions. FEBS Letters, 1985, 190, 1-5.	2.8	11
337	How signal sequences maintain cleavage specificity. Journal of Molecular Biology, 1984, 173, 243-251.	4.2	759
338	Patterns of Amino Acids near Signalâ€Sequence Cleavage Sites. FEBS Journal, 1983, 133, 17-21.	0.2	2,297
339	Helical sidedness and the distribution of polar residues in trans-membrane helices. Journal of Molecular Biology, 1983, 168, 193-196.	4.2	17
340	Signal sequences are not uniformly hydrophobic. Journal of Molecular Biology, 1982, 159, 537-541.	4.2	38
341	RNA splicing: Advantages of parallel processing. Journal of Theoretical Biology, 1982, 98, 563-574.	1.7	1
342	A theoretical study of the attenuation control mechanism. Journal of Theoretical Biology, 1982, 97, 227-238.	1.7	6

#	Article	IF	CITATIONS
343	On the Hydrophobic Nature of Signal Sequences. FEBS Journal, 1981, 116, 419-422.	0.2	185
344	Membrane Proteins. The Amino Acid Composition of Membrane-Penetrating Segments. FEBS Journal, 1981, 120, 275-278.	0.2	161
345	Trans-membrane Translocation of Proteins. A Detailed Physico-Chemical Analysis. FEBS Journal, 1980, 103, 431-438.	0.2	66
346	A sequence correlation between oppositely charged residues in secreted proteins. Biochemical and Biophysical Research Communications, 1980, 93, 82-86.	2.1	7
347	The concentration dependence of the error frequencies and some related quantities in protein synthesis. Journal of Theoretical Biology, 1979, 78, 113-120.	1.7	20
348	Trans-membrane Translocation of Proteins. The Direct Transfer Model. FEBS Journal, 1979, 97, 175-181.	0.2	352
349	Early evolution of cellular electron transport: Molecular models for the ferredoxin-rubredoxin-flavodoxin region. Origins of Life and Evolution of Biospheres, 1978, 9, 27-37.	0.6	17
350	Models for mRNA Translation: Theory versus Experiment. FEBS Journal, 1978, 92, 397-402.	0.2	27
351	Some global ?-sheet characterstics. Biopolymers, 1978, 17, 2033-2037.	2.4	16
352	Translation and messenger RNA secondary structure. Journal of Theoretical Biology, 1977, 68, 321-329.	1.7	27